The hydroxyapatite calcium phosphate based ceramic (Hap) is widely used for bone repair, as it is a biocompatible biomaterial and because it has osteoconductive and osteoinductive properties. However, the low mechanical strength of Hap may limit its applicability. Thus, the present work aims to improve the mechanical properties of Hap, associating it with alumina (Al2O3), using the powder metallurgy technique, which consists in the milling of the precursor powders in a planetary ball mill, uniaxial pressing and sintering. The microstructure and mechanical strength of the sintered samples were evaluated using density, microhardness, compressive strength and wettability tests. It was concluded that the use of Al2O3 in the composite improves the mechanical properties of Hap, while decreases its hydrophilic potential. Thus, the composition with 40% Hap / 60% Al2O3 was considered the best for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.