Rice fields of Meghalaya especially in the coal mining belt receive water contaminated by effluents from mines that are known to carry harmful heavy metal ions such as Cu, Fe, Zn, Ni, Cd, As, Pb, Cr, etc. Cd exposure was analyzed in the cyanobacterium Nostoc muscorum Meg 1 isolated from a contaminated rice field in Sohra, Meghalaya, India. Toxicity study established 0.5 ppm on day 3 to be the LD 50 . At LD 50 chlorophyll a and total protein concentration was reduced by 50.9 and 52.5%, while nitrogenase and glutamine synthetase activities were inhibited by 40.8 and 38.4%. EDX and FTIR analyses confirmed Cd binding and participation of hydroxyl, carbonyl, carboxyl and phosphate groups in biosorption of Cd onto the cell surfaces. SEM study established morphological changes. At pH 8.0 and temperature 25 ± 2°C, the cyanobacterium removed 92% Cd within 24 h. Of this, 91% Cd was adsorbed on the cell surface while 4% was internally accumulated. The energy required for internal accumulation of Cd was partly provided in the form of ATP synthesized during active photosynthesis. The Langmuir isotherm was found best fitted with a R 2 value 0.98 when compared to Freundlich and Temkin adsorption isotherms. The maximum sorption capacity, Q max, of the organism was 71.4 mg of Cd per g of biomass. R L value of 0.29 indicated favorable interaction between cyanobacterial biomass and Cd. The adsorption intensity, n value 7.69 g/L obtained from Freundlich isotherm showed that the organism possessed high Cd sorption capacity.
In this study, Nostoc muscorum, a native cyanobacterial species isolated from a coal mining site, was employed to remove Cu(II), Zn(II), Pb(II) and Cd(II) from aqueous solution containing these metals in the mixture. In this multicomponent study, carried out as per the statistically valid Plackett-Burman design of experiments, the results revealed a maximum removal of both Pb(II) (96.3 %) and Cu(II) (96.42 %) followed by Cd(II) (80.04 %) and Zn(II) (71.3 %) at the end of the 60-h culture period. Further, the removal of these metals was attributed to both passive biosorption and accumulation by the actively growing N. muscorum biomass. Besides, the specific removal rate of these metals by N. muscorum was negatively correlated to its specific growth rate. For a better understanding of the effect of these metals on each other's removal by the cyanobacteria, the results were statistically analyzed in the form of analysis of variance (ANOVA) and Student's t test. ANOVA of the metal bioremoval revealed that the main (individual) effect due to the metals was highly significant (P value <0.05) on each other's removal. Student's t test results revealed that both Zn(II) and Pb(II) strongly inhibited both Cu(II) removal (P value <0.01) and Cd(II) removal (P value <0.02). All these results not only demonstrated a very good potential of the cyanobacteria in the bioremoval of these metals but also the effect of individual metals on each other's removal in the multicomponent system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.