Our aim in this article is to study the existence and the uniqueness of solution for Caginalp hyperbolic phase-field system, with initial conditions, homogenous Dirichlet boundary conditions and polynomial growth potential in bounded and smooth domain.
In this article, we study a hyperbolic equation of Cahn–Hilliard with a proliferation term and Dirichlet boundary conditions. In particular, we prove the existence and uniqueness of the solution, and also the existence of the global attractor.
<abstract><p>Our aim in this paper is to study generalizations of the Caginalp phase-field system based on a thermomechanical theory involving two temperatures and a nonlinear coupling. In particular, we prove well-posedness results. More precisely, the existence of a pullback attractor for a nonautonomous parabolic of type Cahn-Hilliard phase-field system. The pullback attractor is a compact set, invariant with respect to the cocycle and which attracts the solutions in the neighborhood of minus infinity, consequently the attractor pullback (or attractor retrograde) exhibits a infinite fractal dimension.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.