Human monkeypox is a contagious zoonotic viral disease caused by Monkeypox virus and is causing a current outbreak in various regions of the world, being already considered an epidemic and a global public health problem. From the sequenced monkeypox genomes of clades B.1, A.1.1 and A.2 available, we performed analyzes of 9 proteins considered important in the pathogenesis of the disease (A9L, A36R, A50L, B9R, B16L, C3L, C7L, C12L (SPI-1) and H5R) and 4 important proteins for the host's immune response (A27L, A33R, B5R and L1R). We identified four synonymous mutations and six amino acid changes, of which four are in conserved domains, such changes can alter the function of proteins. Furthermore, we did not find the C3L protein in monkeypox genomes from the 2022 outbreak, an important protein for disease pathogenicity. Our analyses suggest that lineage/clade A.2 may be suffering the different effects of various selective pressures than lineage/clade B.1. In conclusion, the mutations identified in the present study have not yet been associated with genetic alterations, significant changes in the transmission route, mean age, signs/symptoms at the clinical presentation, and their evolution could be detected. Therefore, further research in the field is needed since our findings need to be confirmed by new studies.
Ovarian cancer is among the seven most common types of cancer in women, being the most fatal gynecological tumor, due to the difficulty of detection in early stages. Aptamers are important tools to improve tumor diagnosis through the recognition of specific molecules produced by tumors. Here, aptamers and their potential targets in ovarian cancer cells were analyzed by in silico approaches. Specific aptamers were selected by the Cell-SELEX method using Caov-3 and OvCar-3 cells. The five most frequent aptamers obtained from the last round of selection were computationally modeled. The potential targets for those aptamers in cells were proposed by analyzing proteomic data available for the Caov-3 and OvCar-3 cell lines. Overexpressed proteins for each cell were characterized as to their three-dimensional model, cell location, and electrostatic potential. As a result, four specific aptamers for ovarian tumors were selected: AptaC2, AptaC4, AptaO1, and AptaO2. Potential targets were identified for each aptamer through Molecular Docking, and the best complexes were AptaC2-FXYD3, AptaC4-ALPP, AptaO1-TSPAN15, and AptaO2-TSPAN15. In addition, AptaC2 and AptaO1 could detect different stages and subtypes of ovarian cancer tissue samples. The application of this technology makes it possible to propose new molecular biomarkers for the differential diagnosis of epithelial ovarian cancer.
Studies on the development of mRNA vaccines for central nervous system tumors have used gene expression profiles, clinical data and RNA sequencing from sources such as The Cancer Genome Atlas and Chinese Glioma Genome Atlas to identify effective antigens. These studies revealed several immune subtypes of glioma, each one linked to unique prognoses and genetic/immune-modulatory changes. Potential antigens include ARPC1B, BRCA2, COL6A1, ITGB3, IDH1, LILRB2, TP53 and KDR, among others. Patients with immune-active and immune-suppressive phenotypes were found to respond better to mRNA vaccines. While these findings indicate the potential of mRNA vaccines in cancer therapy, further research is required to optimize administration and adjuvant selection, and precisely identify target antigens.
Trypanosomatids belong to a remarkable group of unicellular, parasitic organisms of the order Kinetoplastida, an early diverging branch of the phylogenetic tree of eukaryotes, exhibiting intriguing biological characteristics affecting gene expression (intronless polycistronic transcription, trans-splicing, and RNA editing), metabolism, surface molecules, and organelles (compartmentalization of glycolysis, variation of the surface molecules, and unique mitochondrial DNA), cell biology and life cycle (phagocytic vacuoles evasion, and intricate patterns of cell morphogenesis). With numerous genomic-scale data of several trypanosomatids becoming available since 2005 (genomes, transcriptomes, and proteomes), the scientific community can further investigate the mechanisms underlying these unusual features and address other unexplored phenomena possibly revealing biological aspects of the early evolution of eukaryotes. One fundamental aspect comprises the processes and mechanisms involved in the acquisition and loss of genes throughout the evolutionary history of these primitive microorganisms. Here, we present a comprehensive in silico analysis of pseudogenes in three major representatives of this group: Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi. Pseudogenes, DNA segments originating from altered genes that lost their original function, are genomic relics that can offer an essential record of the evolutionary history of functional genes, as well as clues about the dynamics and evolution of hosting genomes. Scanning these genomes with functional proteins as proxies to reveal intergenic regions with protein-coding features, relying on a customized threshold to distinguish statistically and biologically significant sequence similarities, and reassembling remnant sequences from their debris, we found thousands of pseudogenes and hundreds of open reading frames (ORFs), with particular characteristics in each trypanosomatid: mutation profile, number, content, density, codon bias, average size, single- or multi-copy gene origin, number and type of mutations, putative primitive function, and transcriptional activity. These features suggest a common process of pseudogene formation, different patterns of pseudogene evolution and extant biological functions, and/or distinct genome organization undertaken by those parasites during evolution, as well as different evolutionary and/or selective pressures acting on distinct lineages.
Os pseudogenes são comumente rotulados como "DNA lixo" devido ao seu status não funcional compreendido. A definição de função é um conceito complexo e muitas vezes controverso na biologia. No entanto, o advento dos projetos de genômica em larga escala propiciou a reavaliação da biologia dos pseudogenes, destacando seus principais papéis funcionais e regulatórios em inúmeros organismos e até mesmo em doenças humanas como o câncer. Diferentes estratégias de bioinformática já foram desenvolvidas para identificação destas importantes moléculas biológicas. Assim, o presente estudo descreve a importância dos pseudogenes assim como diversas estratégias e ferramentas em bioinformática empregadas na identificação e determinação de suas funções até então pouco compreendidas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.