The nutritional diagnosis of crops is carried out through costly elemental analyses of different plant organs, particularly leaves, in the laboratory. However, visible and near-infrared (Vis-NIR) spectroscopy of unprocessed plant samples has a high potential as a faster, non-destructive, environmental-friendly alternative to elemental analyses. In this work, the potential of this technique to estimate the concentrations of macronutrients such as nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg), and micronutrients such as iron (Fe), manganese (Mn) and boron (B), in persimmon (Diospyros kaki L.) ‘Rojo Brillante’ leaves, has been investigated. Throughout the crop cycle variable rates of N and K were applied to obtain six nutritional status levels in persimmon trees in an experimental orchard. Then, leaves were systematically sampled throughout the cropping season from the different nutritional levels and spectral reflectance measurements were acquired in the 430–1040 nm wavelength range. The concentrations of nutrients were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) for P, K, Ca, Mg, Fe, Mn and B after microwave digestion, while the Kjeldahl method was used for N. Then, partial least squares regression (PLS-R) was used to model the concentrations of these nutrients from the reflectance measurements of the leaves. The model was calibrated using 75% of the samples while the remaining 25% were left as the independent test set for external validation. The results of the test set indicated an acceptable validation for most of the nutrients, with determination coefficients (R2) of 0.74 for N and P, 0.54 for K, 0.77 for Ca, 0.60 for Mg, 0.39 for Fe, 0.69 for Mn and 0.83 for B. These findings support the potential use of Vis-NIR spectrometric techniques as an alternative to conventional laboratory methods for the persimmon nutritional status diagnosis although more research is needed to know how the models developed one year perform in ensuing years.
Visible and near-infrared (Vis/NIR) hyperspectral imaging (HSI) was used for rapid and non-destructive determination of macro- and micronutrient contents in persimmon leaves. Hyperspectral images of 687 leaves were acquired in the 500–980 nm range over 6 months, covering a complete vegetative cycle. The average reflectance spectrum of each leaf was extracted, and foliar ionomic analysis was used as a reference method to determine the actual concentration of the nutrients in the leaves. Analyses were performed via emission spectrometry (ICP-OES) for macro- and micronutrients after microwave digestion and using the Kjeldahl method to quantify nitrogen. Partial least square regression (PLS-R) was used to predict the nutrient concentration based on spectral data from the leaf using actual values of each element as predictor variables. Several methods were used to pre-process the spectra, including Savitzky–Golay (SG) smoothing, standard normal variate (SNV) and first (1D) and second derivatives (2D). Seventy-five percent of the samples were used to calibrate and validate the model by cross-validation, whereas the remaining twenty-five % were used as an independent test set. The best performance of the models for the test set achieved an R2 = 0.80 for nitrogen. Results were also satisfactory for phosphorous, calcium, magnesium and boron, with determination coefficient R2 values of 0.63, 0.66, 0.58 and 0.69, respectively. For the other nutrients, lower prediction rates were attained (R2 = 0.48 for potassium, R2 = 0.38 for iron, R2 = 0.24 for copper, R2 = 0.23 for zinc and R2 = 0.22 for manganese). The variable importance in projection (VIP) was used to extract the most influential bands for the best-predicted nutrients, which were N, K and B.
The nutritional diagnosis of crops is carried out through costly foliar ionomic analysis in laboratories. However, spectroscopy is a sensing technique that could replace these destructive analyses for monitoring nutritional status. This work aimed to develop a calibration model to predict the foliar concentrations of macro and micronutrients in citrus plantations based on rapid non-destructive spectral measurements. To this end, 592 ‘Clementina de Nules’ citrus leaves were collected during several months of growth. In these foliar samples, the spectral absorbance (430–1040 nm) was measured using a portable spectrometer, and the foliar ionomics was determined by emission spectrometry (ICP-OES) for macro and micronutrients, and the Kjeldahl method to quantify N. Models based on partial least squares regression (PLS-R) were calibrated to predict the content of macro and micronutrients in the leaves. The determination coefficients obtained in the model test were between 0.31 and 0.69, the highest values being found for P, K, and B (0.60, 0.63, and 0.69, respectively). Furthermore, the important P, K, and B wavelengths were evaluated using the weighted regression coefficients (BW) obtained from the PLS-R model. The results showed that the selected wavelengths were all in the visible region (430–750 nm) related to foliage pigments. The results indicate that this technique is promising for rapid and non-destructive foliar macro and micronutrient prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.