We report on improved proton acceleration from the interaction of a short pulse high intensity laser (>10 20 Wcm −2 ) with nano-engineered targets. Planar targets (from 7 to 20 μm) with protruding gold nanowires having different total areal densities, lengths, and diameters, ranging from 3% to 60% of the size of the laser focal spot were used during an experimental campaign at the 3 J, 30 fs HERCULES laser facility. The results show the importance of the average number of nanowires per focal spot, N, on laser energy absorption. We show that the proton acceleration is significantly improved by using 1 nanowires per focal spot. Detailed analysis indicates that 1 nanowire per focal spot optimizes the interaction between laser pulse and nanowires, in which the wings of the pulse pull out electrons from the wires forming a plasma with density that allows for deep penetration of the laser pulse into the array. When moving away from this optimum in both directions, N=1 and N?1, the laser pulse-nanowire coupling is either too weak or unfavorable for obtaining maximum proton energy. Proton spectra are compared to simulations using 2D-3V particle-in-cell code which reproduces the experimental data with good agreement.
We present an experiment performed in 2016 at the LULI2000 laser facility in which X-ray and XUV absorption structures of nickel hot plasmas were measured simultaneously. Such experiments may provide stringent tests of the accuracy of plasma atomic-physics codes used to the modeling of plasmas close to local thermodynamic equilibrium. The experimental setup relies on a symmetric heating of the sample foil by two gold hohlraums in order to reduce the spatial gradients. The plasma conditions are characterized by temperatures between 10 and 20 eV and densities of the order of 10 −3 g/cm 3-10 −2 g/cm 3. For the X-ray part, we investigate the 2p-3d and 2p-4d transitions, and for the XUV part, we recorded the Δn = 0 (n = 3) transitions, which present a high sensitivity to plasma temperature. These latter transitions are of particular interest because, in mid-Z plasmas, they dominate the Planck and Rosseland mean opacities. Measured spectra are compared to calculations performed using the hybrid opacity code SCO-RCG and the Flexible Atomic Code (FAC). The influence of a spectator electron on the calculated spectra is analyzed using the latter code.
Exotic x-ray emission from dense matter is identified as the complex high intensity satellite emission from autoionizing states of highly charged ions. Among a vast amount of possible transitions, double K-hole hollow ion (HI) x-ray emission K0LX → K1LX−1 + hνhollow is of exceptional interest due to its advanced diagnostic potential for matter under extreme conditions where opacity and radiation fields play important roles. Transient ab initio simulations identify intense short pulse radiation fields (e.g., those emitted by x-ray free electron lasers) as possible driving mechanisms of HI x-ray emission via two distinct channels: first, successive photoionization of K-shell electrons, second, photoionization followed by resonant photoexciation among various ionic charge states that are simultaneously present in high density matter. We demonstrated that charge exchange of intermixing inhomogenous plasmas as well as collisions driven by suprathermal electrons are possible mechanisms to populate HIs to observable levels in dense plasmas, particularly in high current Z-pinch plasmas and high intensity field-ionized laser produced plasmas. Although the HI x-ray transitions were repeatedly identified in many other cases of dense optical laser produced plasmas on the basis of atomic structure calculations, their origin is far from being understood and remains one of the last holy grails of high intensity laser–matter interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.