Mathematical modeling has been used to simulate the interaction of chemotherapy and immunotherapy drugs intervention with the dynamics of tumor cells growth. This work studies the interaction of cells in the immune system, such as the natural killer, dendritic, and cytotoxic CD8+ T cells, with chemotherapy. Four different cases were considered in the simulation: no drug intervention, independent interventions (either chemotherapy or immunotherapy), and combined interventions of chemotherapy and immunotherapy. The system of ordinary differential equations was initially solved using the Runge-Kutta method and compared with two additional methods: the Explicit Euler and Heun’s methods. Results showed that the combined intervention is more effective compared to the other cases. In addition, when compared with Runge-Kutta, the Heun’s method presented a better accuracy than the Explicit Euler technique. The proposed mathematical model can be used as a tool to improve cancer treatments and targeted therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.