The reverse osmosis membrane module is an integral element of a desalination system as it determines the overall performance of the desalination plant. The fraction of clean water that can be recovered via this process is often limited by salt precipitation which plays a critical role in its sustainability. In this work, we present a model to study the complex interplay between flow, transport and precipitation processes in reverse osmosis membranes, which together influence recovery and in turn process sustainability. A reactive porous interface model describes the membrane with a dynamic evolving porosity and permeability to capture the scaling and clogging of the membrane. An open-source finite-volume numerical solver is implemented within the OpenFOAM ® library and numerical tests are presented here showing the effect of the various parameters of the model and the robustness of the model to describe a wide range of operating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.