Iron nanoparticles were produced using the extract of mortiño berry (Vaccinium floribundum) (vZVI) as reducing and stabilizer agent. Fresh nanoparticles were characterized using TEM, XRD, and FTIR techniques, while laboratory experiments were conducted to assess the removal of total petroleum hydrocarbons (TPHs) from water and soil after treatment with synthesized nanoscale iron particles. Nanoparticles as produced were spherical in the range of 5–10 nm. After treatment with vZVI nanoparticles, water contaminated with two concentrations of TPHs (9.32 mg/L and 94.20 mg/L) showed removals of 85.94% and 88.34%, respectively, whereas a contaminated soil with a TPHs concentration of 5000 mg/kg treated during 32 h with nanoparticles reached a removal of 81.90%. Results indicate that the addition of vZVI nanoparticles produced strong reducing conditions, which accelerate removal of TPHs and suggest that these nanoparticles might be a promising technology to clean up TPHs contaminated water and soils.
rough preparation of multicomponent nanoparticles (MCNPs) using ferric chloride (FeCl 3 ), sodium sulfate (Na 2 SO 4 ), and the extract of mortiño fruit (Vaccinium floribundum Kunth), we dramatically improved the removal/immobilization of heavy metals from water and in soils. As-prepared nanoparticles were spherical measuring approximately 12 nm in diameter and contained iron oxides and iron sulfides in the crystal structure. Removal of copper and zinc from water using MCNPs showed high efficiencies (>99%) at pH above 6 and a ratio of 0.5 mL of the extract:10 mL 0.5 M FeCl 3 ·6H 2 O : 10 mL 0.035 M Na 2 SO 4 . e physisorption process followed by chemisorption was regarded as the removal mechanism of Cu and Zn from water. While, when MCNPs were used to treat soils contaminated with heavy metals, more than 95% of immobilization was accomplished for all metals. Nevertheless, the distribution of the metallic elements changed in the soil fractions after treatment. Results indicate that immobilization of metals after the injection of nanoparticles into soils was effective. Metals did not leach out when soils were drained with rain, drinking, and deionized water but fairly leached out under acidic water drainage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.