Macroporous ceramic foams are used in different fields due to their unique properties, which include: low density, low thermal conductivity, high permeability, high temperature stability and high resistance to chemical attack. Highly porous silicon carbide (SiC) foams are materials of great interest for absorption, catalytic support, and thermal insulation applications, among others, due to their chemical resistance, large surface area, low flow resistance, low pressure drop, as well as high resistance to temperature and corrosion. In this work, highly porous, SiC foams were fabricated via template replica, using recycled polymeric foams as sacrificial templates. A sucrose-based resin containing silica powder was used as a foam precursor. Polymeric templates were impregnated, followed by thermal treatment at 1500 °C under inert atmosphere. The effect of C/SiO2 mass ratio (1.0-1.75) in the precursor and the use of alumina (0.5 - 2.5 %wt/v) as a sintering additive were evaluated in terms of the morphology of the fabricated foams, as well as SiC yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.