Our data suggested that beta1-integrin shedding produced by repetitive allergen challenges in guinea-pigs was associated with collagen deposition in SER of bronchi and bronchioles, along with inflammatory cells infiltration and AI-AHR development.
Smooth muscle is a central structure involved in the regulation of airway tone. In addition, it plays an important role in the development of some pathologies generated by alterations in contraction, such as hypercontractility and the airway hyperresponsiveness observed in asthma. The molecular processes associated with smooth muscle contraction are centered around myosin light chain (MLC) phosphorylation, which is controlled by a balance in the activity of myosin light-chain kinase (MLCK) and myosin light-chain phosphatase (MLCP). MLCK activation depends on increasing concentrations of intracellular Ca 2+ , while MLCP activation is independent of Ca 2+. MLCP contains a phosphatase subunit (PP1c) that is regulated through myosin phosphatase target subunit 1 (MYPT1) and other subunits, such as glycogenassociated regulatory subunit and myosin-binding subunit 85 kDa. Interestingly, MLCP inhibition may contribute to exacerbation of smooth muscle contraction by increasing MLC phosphorylation to induce hypercontractility. Many pathways inhibiting MLCP activity in airway smooth muscle have been proposed and are focused on inhibition of PP1c, inhibitory phosphorylation of MYPT1 and dissociation of the PP1c-MYPT1 complex.
BackgroundCaveolin-1 is a fundamental signalling scaffold protein involved in contraction; however, the role of caveolin-1 in airway responsiveness remains unclear. We evaluated the relationship between caveolin-1 expression in airway smooth muscle (ASM) and antigen-induced airway responsiveness and obstruction in a guinea pig asthma model.MethodsAirway obstruction in sensitised guinea pigs, induced by antigenic (ovalbumin) challenges administered every 10 days, was measured. Antigen-induced responsiveness to histamine and the expression of caveolin-1 and cavin 1, 2 and 3 were evaluated at the third ovalbumin challenge. The control group received saline solution instead of ovalbumin.ResultsAfter the first challenge, antigen exposure induced a transient airway obstruction and airway hyperresponsiveness, high levels of IL-4 and IL-5 in lung and airway globet cells proliferation at the third antigenic challenge. Caveolin-1 mRNA levels in total lung decreased in the experimental group compared with controls. Flow cytometric analysis of ASM from the experimental group showed a high number of cells expressing caveolin-1 compared with controls. This increase was confirmed by western blot. Airway obstruction and hyperresponsiveness correlated with the degree of increased caveolin-1 expression in ASM cells (P < 0.05; r = 0.69 and −0.52, respectively). The expression of cavins 1, 2 and 3 in ASM also increased in the experimental group compared to controls. Immunohistochemical findings reveal that differences in ASM caveolin-1 were not evident between groups. Nevertheless, a marked decrease in caveolin-1 and caspase 3 was observed in the pulmonary vascular smooth muscle of asthma model compared with controls. Histological analysis did not reveal differences in smooth muscles mass or subepithelial fibrosis levels in airways between groups. However, an enlargement of smooth muscle mass was observed in the pulmonary microvessels of experimental animals. This enlargement did not induce changes in pulmonary or systemic arterial pressures.ConclusionsOur data suggest that caveolin-1 expression in ASM has a crucial role in the development of antigen-induced airway obstruction and hyperresponsiveness in a guinea pig asthma model. In addition, the asthma model in guinea pigs appears to induce a contractile smooth muscle phenotype in the airways and a proliferative smooth muscle phenotype in pulmonary vessels.
The extracellular domains of some membrane proteins can be shed from the cell. A similar phenomenon occurs with β1 integrins (α1β1 and α2β1) in guinea pig. The putative role of β1 integrin subunit alterations due to shedding in airway smooth muscle (ASM) in an allergic asthma model was evaluated. Guinea pigs were sensitized and challenged with antigen. Antigenic challenges induced bronchoobstruction and hyperresponsiveness at the third antigenic challenge. Immunohistochemistry and immunoelectronmicroscopy studies showed that the cytosolic and extracellular domains of the β1 integrin subunit shared the same distribution in airway structures in both groups. Various polypeptides with similar molecular weights were detected with both the cytosolic and extracellular β1 integrin subunit antibodies in isolated airway myocytes and the connective tissue that surrounds the ASM bundle. Flow cytometry and Western blot studies showed that the expression of cytosolic and extracellular β1 integrin subunit domains in ASM was similar between groups. An increment of ITGB1 mRNA in ASM was observed in the asthma model group. RACE-PCR of ITGB1 in ASM did not show splicing variants. The expression levels of integrin-linked kinase (ILK) and paxillin diminished in the asthma model, but not talin. The levels of phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Thr(696) increased in asthma model. Our work suggests that β1 integrin is secreted in guinea pig airway wall. This secretion is not altered in asthma model; nevertheless, β1 integrin cytodomain assembly proteins in focal cell adhesions in which ILK and paxillin are involved are altered in asthma model. J. Cell. Biochem. 117: 2385-2396, 2016. © 2016 Wiley Periodicals, Inc.
Background Airway obstruction (AO) in asthma is driven by airway smooth muscle (ASM) contraction. AO can be induced extrinsically by direct stimulation of ASM with contractile agonists as histamine, or by indirect provocation with antigens as ovalbumin, while the airway tone is dependent on intrinsic mechanisms. The association of the ASM phenotypes involved in different types of AO and airway tone in guinea pigs was evaluated. Methods Guinea pigs were sensitized to ovalbumin and challenged with antigen. In each challenge, the maximum OA response to ovalbumin was determined, and before the challenges, the tone of the airways. At third challenge, airway responsiveness (AR) to histamine was evaluated and ASM cells from trachea were disaggregated to determinate: (a) by flow cytometry, the percentage of cells that express transforming growth factor-β1 (TGF-β1), interleukin-13 (IL-13) and sarco-endoplasmic Ca2+ ATPase-2b (SERCA2b), (b) by RT-PCR, the SERCA2B gene expression, (c) by ELISA, reduced glutathione (GSH) and, (d) Ca2+ sarcoplasmic reticulum refilling rate by microfluorometry. Control guinea pig group received saline instead ovalbumin. Results Antigenic challenges in sensitized guinea pigs induced indirect AO, AR to histamine and increment in airway tone at third challenge. No relationship was observed between AO induced by antigen and AR to histamine with changes in airway tone. The extent of antigen-induced AO was associated with both, TGF-β1 expression in ASM and AR degree. The magnitude of AR and antigen-induced AO showed an inverse correlation with GSH levels in ASM. The airway tone showed an inverse association with SERCA2b expression. Conclusions Our data suggest that each type of AO and airway tone depends on different ASM phenotypes: direct and indirect AO seems to be sensitive to the level of oxidative stress; indirect obstruction induced by antigen appears to be influenced by the expression of TGF-β1 and the SERCA2b expression level plays a role in the airway tone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.