Objective:To investigate the temporal dynamics of cerebral small vessel disease (SVD) by 3 consecutive assessments over a period of 9 years, distinguishing progression from regression.Methods:Changes in SVD markers of 276 participants of the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Imaging Cohort (RUN DMC) cohort were assessed at 3 time points over 9 years. We assessed white matter hyperintensities (WMH) volume by semiautomatic segmentation and rated lacunes and microbleeds manually. We categorized baseline WMH severity as mild, moderate, or severe according to the modified Fazekas scale. We performed mixed-effects regression analysis including a quadratic term for increasing age.Results:Mean WMH progression over 9 years was 4.7 mL (0.54 mL/y; interquartile range 0.95–5.5 mL), 20.3% of patients had incident lacunes (2.3%/y), and 18.9% had incident microbleeds (2.2%/y). WMH volume declined in 9.4% of the participants during the first follow-up interval, but only for 1 participant (0.4%) throughout the whole follow-up. Lacunes disappeared in 3.6% and microbleeds in 5.7% of the participants. WMH progression accelerated over time: including a quadratic term for increasing age during follow-up significantly improved the model (p < 0.001). SVD progression was predominantly seen in participants with moderate to severe WMH at baseline compared to those with mild WMH (odds ratio [OR] 35.5, 95% confidence interval [CI] 15.8–80.0, p < 0.001 for WMH progression; OR 5.7, 95% CI 2.8–11.2, p < 0.001 for incident lacunes; and OR 2.9, 95% CI 1.4–5.9, p = 0.003 for incident microbleeds).Conclusions:SVD progression is nonlinear, accelerating over time, and a highly dynamic process, with progression interrupted by reduction in some, in a population that on average shows progression.
Lacunes of presumed vascular origin (lacunes) are associated with an increased risk of stroke, gait impairment, and dementia and are a primary imaging feature of the small vessel disease. Quantification of lacunes may be of great importance to elucidate the mechanisms behind neuro-degenerative disorders and is recommended as part of study standards for small vessel disease research. However, due to the different appearance of lacunes in various brain regions and the existence of other similar-looking structures, such as perivascular spaces, manual annotation is a difficult, elaborative and subjective task, which can potentially be greatly improved by reliable and consistent computer-aided detection (CAD) routines.In this paper, we propose an automated two-stage method using deep convolutional neural networks (CNN). We show that this method has good performance and can considerably benefit readers. We first use a fully convolutional neural network to detect initial candidates. In the second step, we employ a 3D CNN as a false positive reduction tool. As the location information is important to the analysis of candidate structures, we further equip the network with contextual information using multi-scale analysis and integration of explicit location features. We trained, validated and tested our networks on a large dataset of 1075 cases obtained from two different studies. Subsequently, we conducted an observer study with four trained observers and compared our method with them using a free-response operating characteristic analysis. Shown on a test set of 111 cases, the resulting CAD system exhibits performance similar to the trained human observers and achieves a sensitivity of 0.974 with 0.13 false positives per slice. A feasibility study also showed that a trained human observer would considerably benefit once aided by the CAD system.
Background and Purpose-White matter hyperintensities (WMH) are frequently seen on neuroimaging of elderly and are associated with cognitive decline and the development of dementia. Yet, the temporal dynamics of conversion of normalappearing white matter (NAWM) into WMH remains unknown. We examined whether and when progression of WMH was preceded by changes in fluid-attenuated inversion recovery and diffusion tensor imaging values, thereby taking into account differences between participants with mild versus severe baseline WMH. Methods-From 266 participants of the RUN DMC study (Radboud University Nijmegen Diffusion Tensor and MagneticResonance Imaging Cohort), we semiautomatically segmented WMH at 3 time points for 9 years. Images were registered to standard space through a subject template. We analyzed differences in baseline fluid-attenuated inversion recovery, fractional anisotropy, and mean diffusivity (MD) values and changes in MD values over time between 4 regions: (1) remaining NAWM, (2) NAWM converting into WMH in the second follow-up period, (3) NAWM converting into WMH in the first follow-up period, and (4)
The relation between progression of cerebral small vessel disease (SVD) and gait decline is uncertain, and diffusion tensor imaging (DTI) studies on gait decline are lacking. We therefore investigated the longitudinal associations between (micro) structural brain changes and gait decline in SVD using DTI. 275 participants were included from the Radboud University Nijmegen Diffusion tensor and Magnetic resonance imaging Cohort (RUN DMC), a prospective cohort of participants with cerebral small vessel disease aged 50–85 years. Gait (using GAITRite) and magnetic resonance imaging measures were assessed during baseline (2006–2007) and follow-up (2011 − 2012). Linear regression analysis was used to investigate the association between changes in conventional magnetic resonance and diffusion tensor imaging measures and gait decline. Tract-based spatial statistics analysis was used to investigate region-specific associations between changes in white matter integrity and gait decline. 56.2% were male, mean age was 62.9 years (SD8.2), mean follow-up duration was 5.4 years (SD0.2) and mean gait speed decline was 0.2 m/s (SD0.2). Stride length decline was associated with white matter atrophy (β = 0.16, p = 0.007), and increase in mean white matter radial diffusivity and mean diffusivity, and decrease in mean fractional anisotropy (respectively, β = − 0.14, p = 0.009; β = − 0.12, p = 0.018; β = 0.10, p = 0.049), independent of age, sex, height, follow-up duration and baseline stride length. Tract-based spatial statistics analysis showed significant associations between stride length decline and fractional anisotropy decrease and mean diffusivity increase (primarily explained by radial diffusivity increase) in multiple white matter tracts, with the strongest associations found in the corpus callosum and corona radiata, independent of traditional small vessel disease markers. White matter atrophy and loss of white matter integrity are associated with gait decline in older adults with small vessel disease after 5 years of follow-up. These findings suggest that progression of SVD might play an important role in gait decline.
Plasma Aβ levels are associated with both presence and progression of SVD markers, suggesting that Aβ pathology might contribute to the development and progression of SVD. Plasma Aβ levels might thereby serve as inexpensive and noninvasive measure for identifying individuals with increased risk for progression of SVD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.