Vulvovaginal candidiasis (VVC) is the second most common cause of vaginitis after bacterial vaginosis, affecting millions of women worldwide every year. Candida albicans is the most frequent agent of VVC followed by other species of Candida such as C. glabrata and C. parapsilosis. Out of a total of 100 clinical isolates of Candida spp. obtained from patients diagnosed with VVC, 84 were identified as C. albicans, while the remaining isolates were identified as non--albicans Candida strains. Phospholipases and proteinases were produced by a majority of the C. albicans strains and esterases and hemolysins a minority of these strains. Among the non-C. albicans strains, only a few of the strains produced these proteins. Nearly all of the isolates formed biofilms. Our results showed that the butoconazole, clotrimazole, and fluconazole were active against C. albicans and less so against the non-albicans Candida strains. The MIC90 of amphotericin B and nystatins were 2 and 4 μg/ml, respectively, against either C. albicans or non-albicans Candida spp. Representative ceragenins (CSA-13, CSA-131, and CSA-138), developed as mimics of endogenous antimicrobial peptides, were active against fluconazole-resistant strains, both alone and in combination with fluconazole. These results suggest the potential use of ceragenins in treating VVC, including infections caused by fluconazole-resistant isolates.
In young cystic fibrosis (CF) patients, is typically the most prevalent organism, while in adults, is the major pathogen. More recently, it was observed that also plays an important role in exacerbations of respiratory symptoms. These species are often coisolated from CF lungs, yet little is known about whether antibiotic killing of one species is influenced by the presence of others. In the present study, we compared the activities of various antibiotics against, , and when grown in monospecies biofilms with the activity observed in a multispecies biofilm. Our results show that differences in antibiotic activity against species grown in mono- and multispecies biofilms are species and antibiotic dependent. Fewer cells are killed by antibiotics that interfere with cell wall synthesis (amoxicillin plus sulbactam, cefepime, imipenem, meropenem, and vancomycin) in the presence of and , while for ciprofloxacin, levofloxacin, and tobramycin, no difference was observed. In addition, we observed that the cell-free supernatant of, but not that of biofilms, also caused this decrease in killing. Overall, was more affected by antibiotic treatment in a multispecies biofilm, while for , no differences were observed between growth in mono- or multispecies biofilms. The results of the present study suggest that it is important to take the community composition into account when evaluating the effect of antimicrobial treatments against certain species in mixed biofilms.
BackgroundBecause of increasing antibiotic resistance, herbal teas are the most popular natural alternatives for the treatment of infectious diseases, and are currently gaining more importance. We examined the antimicrobial activities of 31 herbal teas both alone and in combination with antibiotics or antifungals against some standard and clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, methicillin susceptible/resistant Staphylococcus aureus and Candida albicans.MethodsThe antimicrobial activities of the teas were determined by using the disk diffusion and microbroth dilution methods, and the combination studies were examined by using the microbroth checkerboard and the time killing curve methods.ResultsRosehip, rosehip bag, pomegranate blossom, thyme, wormwood, mint, echinacea bag, cinnamon, black, and green teas were active against most of the studied microorganisms. In the combination studies, we characterized all the expected effects (synergistic, additive, and antagonistic) between the teas and the antimicrobials. While synergy was observed more frequently between ampicillin, ampicillin-sulbactam, or nystatine, and the various tea combinations, most of the effects between the ciprofloxacin, erythromycin, cefuroxime, or amikacin and various tea combinations, particularly rosehip, rosehip bag, and pomegranate blossom teas, were antagonistic. The results of the time kill curve analyses showed that none of the herbal teas were bactericidal in their usage concentrations; however, in combination with antibiotics they showed some bactericidal effect.DiscussionSome herbal teas, particularly rosehip and pomegranate blossom should be avoided because of their antagonistic interactions with some antibiotics during the course of antibiotic treatment or they should be consumed alone for their antimicrobial activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.