The present systematic review and meta-analysis about the accuracy of diagnostic tests aim to describe the findings of literature over the last thirty years for the diagnosis of Chagas disease (CD). This work aimed to determine the accuracy of diagnostic techniques for CD in the disease’s acute and chronic phases. The PubMed database was searched for studies published between 1990 and 2021 on CD diagnostics. Fifty-six published studies that met the criteria were analyzed and included in the meta-analysis, evaluating diagnostic accuracy through sensitivity and specificity. For Enzyme-Linked Immunosorbent Assay (ELISA), Fluorescent Antibody Technique (IFAT), Hemagglutination Test (HmT), Polymerase Chain Reaction (PCR), and Real-Time Polymerase Chain Reaction (qPCR) diagnosis methods, the sensitivity had a median of 99.0%, 78.0%, 75.0%, 76.0%, and 94.0%, respectively; while specificity presented a median of 99.0%, 99.0%, 99.0%, 98.0%, and 98.0%, respectively. This meta-analysis showed that ELISA and qPCR techniques had a higher performance compared to other methods of diagnosing CD in the chronic and acute phases, respectively. It was concluded utilizing the Area Under the Curve restricted to the false positive rates (AUCFPR), that the ELISA diagnostic test presents the highest performance in diagnosing acute and chronic CD, compared to serological and molecular tests. Future studies focusing on new CD diagnostics approaches should be targeted.
Since the number of drugs based on natural products (NPs) represents a large source of novel pharmacological entities, NPs have acquired significance in drug discovery. Peru is considered a megadiverse country with many endemic species of plants, terrestrial, and marine animals, and microorganisms. NPs databases have a major impact on drug discovery development. For this reason, several countries such as Mexico, Brazil, India, and China have initiatives to assemble and maintain NPs databases that are representative of their diversity and ethnopharmacological usage. We describe the assembly, curation, and chemoinformatic evaluation of the content and coverage in chemical space, as well as the physicochemical attributes and chemical diversity of the initial version of the Peruvian Natural Products Database (PeruNPDB), which contains 280 natural products. Access to PeruNPDB is available for free (https://perunpdb.com.pe/). The PeruNPDB’s collection is intended to be used in a variety of tasks, such as virtual screening campaigns against various disease targets or biological endpoints. This emphasizes the significance of biodiversity protection both directly and indirectly on human health.
Since the number of drugs based on natural products (NPs) represents a large source of novel pharmacological entities, NPs have acquired significance in drug discovery. Peru is considered a megadiverse country with many endemic species of plants, terrestrial, and marine animals, and microorganisms. NPs databases have a major impact on drug discovery development. For this reason, several countries such as Mexico, Brazil, India, and China have initiatives to assemble and maintain NPs databases that are representative of their diversity and ethnopharmacological usage. We describe the assembly, curation, and full chemoinformatic evaluation of the content and coverage in chemical space, as well as the physicochemical attributes and chemical diversity of the initial version of the Peruvian Natural Products Database (PeruNPDB), which contains 280 compounds. Access to PeruNPDB is available for free (https://perunpdb.com.pe/). The PeruNPDB collection is intended to be used in a variety of tasks, such as virtual screening campaigns against various disease targets or biological endpoints. This emphasizes the significance of biodiversity protection both directly and indirectly on human health.
Introduction: Leishmaniasis is a disease with high mortality rates and approximately 1.5 million new cases each year. Despite the new approaches and advances to fight the disease, there are no effective therapies. Methods: Hence, this study aims to screen for natural products' structural analogs as new drug candidates against leishmaniasis. We applied Computer-aided drug design (CADD) approaches, such as virtual screening, molecular docking, molecular dynamics simulation, molecular mechanics–generalized Born surface area (MM–GBSA) binding free estimation, and free energy perturbation (FEP) aiming to select structural analogs from natural products that have shown anti-leishmanial and anti-arginase activities and that could bind selectively against the Leishmania arginase enzyme. Results: The compounds 2H-1-benzopyran, 3,4-dihydro-2-(2-methylphenyl)-(9CI), echioidinin, and malvidin showed good results against arginase targets from three parasite species and negative results for potential toxicities. The echioidinin and malvidin ligands generated interactions in the active center at pH 2.0 conditions by MM-GBSA and FEP methods. Conclusions: This work suggests the potential anti-leishmanial activity of the compounds and thus can be further in vitro and in vivo experimentally validated.
In this work, we report a systematic review and meta-analysis that seeks to analyze the accuracy of diagnostic tests for coronavirus disease 2019 (COVID-19). The objective of this article is to detail the scientific findings based on diagnostic tests of the last years when the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred. Searches for published studies were carried out in the PubMed database between the years 2020 and 2021 for the diagnosis of COVID-19. Ninety-nine scientific articles that met the criteria were examined and accepted in the meta-analysis, and the diagnostic accuracy was evaluated through specificity and sensitivity. Molecular tests [Reverse transcription polymerase chain reaction (RT-PCR), reverse transcription loop-mediated isothermal amplification (RT-LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR)] showed better performance in terms of sensitivity and specificity when compared to serological tests [Enzyme-linked immunosorbent assay (ELISA), chemiluminescence immunoassay (CLIA), lateral flow immunoassay (LFIA), chemiluminescent microparticle immunoassays (CMIA), and Fluorescence immunoassay (FIA)], which showed higher specificity, mainly for the detection of IgG antibodies; however, they showed sensitivity <90%. In addition, the antiviral neutralization bioassay (ANB) diagnostic test demonstrated high potential for the diagnosis of COVID-19, since it obtained the highest area under the curve restricted to the false-positive rates (AUCFPR) of 0.984. It is settled that the different diagnostic tests have been efficiently adapted for the detection of SARS-CoV-2; however, their performance still needs to be optimized to control future outbreaks of COVID-19, which will also serve to help the control of future infectious agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.