Despite the fact that the heart requires huge amounts of energy to sustain contractile function, it has limited energy reserves and must therefore continually produce large amounts of adenosine triphosphate (ATP) to sustain function. Fatty acids are the primary energy substrate of the adult heart, with more than 60% of the energy normally obtained from the oxidation of fatty acids, the remainder coming from the metabolism of carbohydrates. Alterations in both the rates of ATP production and the type of energy substrate used by the heart can have consequences on contractile function, as well as on its ability to respond to energetic stresses. Switches in myocardial substrate utilization and energy production rates have been shown to occur in various cardiomyopathies, as well as in any subsequent heart failure. Heart failure is characterized by an inefficient pumping of the heart, which fails to meet the energy requirements of the body. A number of cardiomyopathies can lead to heart failure. This paper will review the alterations in energy metabolism that occur in a number cardiomyopathies, including ischemic and diabetic cardiomyopathies, as well as hypertrophic cardiomyopathies resulting from mutations in enzymes involved in energy metabolism, such as 5' adenosine monophosphate-activated protein kinase (AMPK).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.