Abstract:In this work we obtain analytical solutions for the electrical RLC circuit model defined with Liouville-Caputo, Caputo-Fabrizio and the new fractional derivative based in the Mittag-Leffler function. Numerical simulations of alternative models are presented for evaluating the effectiveness of these representations. Different source terms are considered in the fractional differential equations. The classical behaviors are recovered when the fractional order α is equal to 1.
We investigate in this manuscript the existence of solution for two fractional differential inclusions. At first we discuss the existence of solution of a class of fractional hybrid differential inclusions. To illustrate our results we present an illustrative example. We study the existence and dimension of the solution set for some fractional differential inclusions.
Abstract:In this paper, we propose a new numerical algorithm, namely q-homotopy analysis Sumudu transform method (q-HASTM), to obtain the approximate solution for the nonlinear fractional dynamical model of interpersonal and romantic relationships. The suggested algorithm examines the dynamics of love affairs between couples. The q-HASTM is a creative combination of Sumudu transform technique, q-homotopy analysis method and homotopy polynomials that makes the calculation very easy. To compare the results obtained by using q-HASTM, we solve the same nonlinear problem by Adomian's decomposition method (ADM). The convergence of the q-HASTM series solution for the model is adapted and controlled by auxiliary parameter and asymptotic parameter n. The numerical results are demonstrated graphically and in tabular form. The result obtained by employing the proposed scheme reveals that the approach is very accurate, effective, flexible, simple to apply and computationally very nice.
Abstract:In this article, a numerical scheme is formulated and analysed to solve the time-space fractional advection-diffusion equation, where the Riesz derivative and the Caputo derivative are considered in spatial and temporal directions, respectively. The Riesz space derivative is approximated by the second-order fractional weighted and shifted Grünwald-Letnikov formula. Based on the equivalence between the fractional differential equation and the integral equation, we have transformed the fractional differential equation into an equivalent integral equation. Then, the integral is approximated by the trapezoidal formula. Further, the stability and convergence analysis are discussed rigorously. The resulting scheme is formally proved with the second order accuracy both in space and time. Numerical experiments are also presented to verify the theoretical analysis.
Abstract:In this work, the study of the fractional behavior of the Bateman-Feshbach-Tikochinsky and Caldirola-Kanai oscillators by using different fractional derivatives is presented. We obtained the Euler-Lagrange and the Hamiltonian formalisms in order to represent the dynamic models based on the Liouville-Caputo, Caputo-Fabrizio-Caputo and the new fractional derivative based on the Mittag-Leffler kernel with arbitrary order α. Simulation results are presented in order to show the fractional behavior of the oscillators, and the classical behavior is recovered when α is equal to 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.