The main goal of brain cancer surgery is to perform an accurate resection of the tumor, preserving as much normal brain tissue as possible for the patient. The development of a non-contact and label-free method to provide reliable support for tumor resection in real-time during neurosurgical procedures is a current clinical need. Hyperspectral imaging is a non-contact, non-ionizing, and label-free imaging modality that can assist surgeons during this challenging task without using any contrast agent. In this work, we present a deep learning-based framework for processing hyperspectral images of in vivo human brain tissue. The proposed framework was evaluated by our human image database, which includes 26 in vivo hyperspectral cubes from 16 different patients, among which 258,810 pixels were labeled. The proposed framework is able to generate a thematic map where the parenchymal area of the brain is delineated and the location of the tumor is identified, providing guidance to the operating surgeon for a successful and precise tumor resection. The deep learning pipeline achieves an overall accuracy of 80% for multiclass classification, improving the results obtained with traditional support vector machine (SVM)-based approaches. In addition, an aid visualization system is presented, where the final thematic map can be adjusted by the operating surgeon to find the optimal classification threshold for the current situation during the surgical procedure.
Primary management for head and neck cancers, including squamous cell carcinoma (SCC), involves surgical resection with negative cancer margins. Pathologists guide surgeons during these operations by detecting cancer in histology slides made from the excised tissue. In this study, 381 digitized, histological whole-slide images (WSI) from 156 patients with head and neck cancer were used to train, validate, and test an inception-v4 convolutional neural network. The proposed method is able to detect and localize primary head and neck SCC on WSI with an AUC of 0.916 for patients in the SCC testing group and 0.954 for patients in the thyroid carcinoma testing group. Moreover, the proposed method is able to diagnose WSI with cancer versus normal slides with an AUC of 0.944 and 0.995 for the SCC and thyroid carcinoma testing groups, respectively. For comparison, we tested the proposed, diagnostic method on an open-source dataset of WSI from sentinel lymph nodes with breast cancer metastases, CAMELYON 2016, to obtain patch-based cancer localization and slide-level cancer diagnoses. The experimental design yields a robust method with potential to help create a tool to increase efficiency and accuracy of pathologists detecting head and neck cancers in histological images.
The main conclusions of this study were that (1) the semiautomated approach reduced interobserver segmentation variability; (2) the segmentation accuracy of the semiautomated approach, as well as the accuracies of recently published methods from other groups, were within the range of observed expert variability in manual prostate segmentation; and (3) further efforts in the development of computer-assisted segmentation would be most productive if focused on improvement of segmentation accuracy and reduction of variability within the prostatic apex and base.
Segmentation of the uterine cavity and placenta in fetal magnetic resonance (MR) imaging is useful for the detection of abnormalities that affect maternal and fetal health. In this study, we used a fully convolutional neural network for 3D segmentation of the uterine cavity and placenta while a minimal operator interaction was incorporated for training and testing the network. The user interaction guided the network to localize the placenta more accurately. We trained the network with 70 training and 10 validation MRI cases and evaluated the algorithm segmentation performance using 20 cases. The average Dice similarity coefficient was 92% and 82% for the uterine cavity and placenta, respectively. The algorithm could estimate the volume of the uterine cavity and placenta with average errors of 2% and 9%, respectively. The results demonstrate that the deep learning-based segmentation and volume estimation is possible and can potentially be useful for clinical applications of human placental imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.