Radiation synthesis of reverse osmosis membranes were carried out by grafting of N-Isopropyl acrylamide (NIPAM) and ZnO nanoparticles incorporation onto polyamide thin film composite reverse osmosis membranes PA(TFC). The effect of monomer concentration, radiation time and concentration of ZnO nanoparticles on the grafting percent were investigated. The properties of the prepared grafted reverse osmosis membranes were characterized by using different analytical tools such as contact angles goniometer, Fourier transform IR (FTIR), X-ray diffraction (XRD), Field Emission-Scanning Electron Microscope (FESEM). The performance of the reverse osmosis process of the neat and the modified PA(TFC) membranes in terms of water flux and salt rejection (%) was investigated. The chlorine and biofouling resistance properties of the neat and the modified PA(TFC) membrane were evaluated. It is found that, the performance of the modified ZnO NPs/P(NIPAM)-g-PA(TFC) membrane is much better than the neat PA(TFC) membrane.
Radiation-induced copolymerization of butyl methacrylate/acrylamide has been investigated. It was observed that as the irradiation dose increases, the gelation percent increases and the maximum gelation % was achieved at irradiation dose of 30 kGy. The equilibrium swelling studies of the prepared hydrogels at various conditions were carried out in an aqueous solution. The pH sensitivity in the range of 4-7.5 was investigated. It is found that the swelling behavior of Poly (BMA/AAm) is higher than that of Poly(BMA) and Poly(AAm). Swelling kinetics and diffusion mechanism indicate that the water penetration obeys non-Fickian transport mechanism. The characterization and some selected properties of the prepared hydrogels were evaluated using FTIR, XRD, TGA and SEM. The drug release characteristics of the prepared hydrogel were studied using heparin as example of anticoagulant drug. The drug release found to be governed by multiple factors contributed by each composition of the prepared hydrogel including their drug binding affinities and water uptake rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.