Over the last years, with the explosive growth of social media, huge amounts of rumors have been rapidly spread on the internet. Indeed, the proliferation of malicious misinformation and nasty rumors in social media can have harmful effects on individuals and society. In this paper, we investigate the content of the fake news in the Arabic world through the information posted on YouTube. Our contribution is threefold. First, we introduce a novel Arab corpus for the task of fake news analysis, covering the topics most concerned by rumors. We describe the corpus and the data collection process in detail. Second, we present several exploratory analysis on the harvested data in order to retrieve some useful knowledge about the transmission of rumors for the studied topics. Third, we test the possibility of discrimination between rumor and no rumor comments using three machine learning classifiers namely, Support Vector Machine (SVM), Decision Tree (DT) and Multinomial Naïve Bayes (MNB).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.