Flavonoids are functional constituents of many fruits and vegetables. Some flavonoids have antidiabetic properties because they improve altered glucose and oxidative metabolisms of diabetic states. Procyanidins are flavonoids with an oligomeric structure, and it has been shown that they can improve the pathological oxidative state of a diabetic situation. To evaluate their effects on glucose metabolism, we administered an extract of grape seed procyanidins (PE) orally to streptozotocin-induced diabetic rats. This had an antihyperglycemic effect, which was significantly increased if PE administration was accompanied by a low insulin dose. The antihyperglycemic effect of PE may be partially due to the insulinomimetic activity of procyanidins on insulin-sensitive cell lines. PE stimulated glucose uptake in L6E9 myotubes and 3T3-L1 adipocytes in a dose-dependent manner. Like insulin action, the effect of PE on glucose uptake was sensitive to wortmannin, an inhibitor of phosphoinositol 3-kinase and to SB203580, an inhibitor of p38 MAPK. PE action also stimulated glucose transporter-4 translocation to the plasma membrane. In summary, procyanidins have insulin-like effects in insulin-sensitive cells that could help to explain their antihyperglycemic effect in vivo. These effects must be added to their antioxidant activity to explain why they can improve diabetic situations.
Procyanindin extract (PE) is a mixture of polyphenols, mainly procyanidins, obtained from grape seed with putative antiinflammatory activity. We evaluated the PE effect on RAW 264.7 macrophages stimulated with lipopolysaccharide plus interferon-gamma that show a rapid enhanced production of prostaglandin E2 (PGE2) and nitric oxide (NO). Our results demonstrated that PE significantly inhibited the overproduction of NO, dose and time dependently. PE caused a marked inhibition of PGE2 synthesis when administered during activation. Moreover, PE pretreatment diminished iNOS mRNA and protein amount dose dependently (10-65 microg/mL). PE (65 microg/mL) pretreatment inhibited NFkappaB (p65) translocation to nucleus by nearly 40%. Trimeric and longer oligomeric-rich procyanidin fractions from PE (5-30 microg/mL) inhibited iNOS expression but not the monomeric forms catechin and epicatechin. Thus, we show that the degree of polymerization is important in determining procyanidin effects. PE was considerably a more effective inhibitor of NO biosynthesis (IC50 = 50 microg/mL) in comparison to other antiinflammatories, such as aspirin (3 mM), indomethacin (20 microM), and dexamethasone (9 nM). In conclusion, PE modulates inflammatory response in activated macrophages by the inhibition of NO and PGE2 production, suppression of iNOS expression, and NFkB translocation. These results demonstrate an immunomodulatory role of grape seed procyanidins and thus a potential health-benefit in inflammatory conditions that exert an overproduction of NO and PGE2.
Diet-induced obesity is associated with low-grade inflammation, which, in most cases, leads to the development of metabolic disorders, primarily insulin resistance and type 2 diabetes. Although prior studies have implicated the adipose tissue as being primarily responsible for obesity-associated inflammation, the latest discoveries have correlated impairments in intestinal immune homeostasis and the mucosal barrier with increased activation of the inflammatory pathways and the development of insulin resistance. Therefore, it is essential to define the mechanisms underlying the obesity-associated gut alterations to develop therapies to prevent and treat obesity and its associated diseases. Flavonoids appear to be promising candidates among the natural preventive treatments that have been identified to date. They have been shown to protect against several diseases, including CVD and various cancers. Furthermore, they have clear anti-inflammatory properties, which have primarily been evaluated in non-intestinal models. At present, a growing body of evidence suggests that flavonoids could exert a protective role against obesity-associated pathologies by modulating inflammatory-related cellular events in the intestine and/or the composition of the microbiota populations. The present paper will review the literature to date that has described the protective effects of flavonoids on intestinal inflammation, barrier integrity and gut microbiota in studies conducted using in vivo and in vitro models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.