One difficulty in integrating geospatial data sets from different sources is variation in feature classification and semantic content of the data. One step towards achieving beneficial semantic interoperability is to assess the semantic similarity among objects that are categorised within data sets. This article focuses on measuring semantic and structural similarities between categories of formal data, such as Ordnance Survey (OS) cartographic data, and volunteered geographic information (VGI), such as that sourced from OpenStreetMap (OSM), with the intention of assessing possible integration. The model involves 'tokenisation' to search for common roots of words, and the feature classifications have been modelled as an XML schema labelled rooted tree for hierarchical analysis. The semantic similarity was measured using the WordNet::Similarity package, while the structural similarities between sub-trees of the source and target schemas have also been considered. Along with dictionary and structural matching, the data type of the category itself is a comparison variable. The overall similarity is based on a weighted combination of these three measures. The results reveal that the use of a generic similarity matching system leads to poor agreement between the semantics of OS and OSM data sets. It is concluded that a more rigorous peer-to-peer assessment of VGI data, increasing numbers and transparency of contributors, the initiation of more programs of quality testing and the development of more directed ontologies can improve spatial data integration.
Abstract:The assessment of data quality from different sources can be considered as a key challenge in supporting effective geospatial data integration and promoting collaboration in mapping projects. This paper presents a methodology for assessing positional and shape quality for authoritative large-scale data, such as Ordnance Survey (OS) UK data and General Directorate for Survey (GDS) Iraq data, and Volunteered Geographic Information (VGI), such as OpenStreetMap (OSM) data, with the intention of assessing possible integration. It is based on the measurement of discrepancies among the datasets, addressing positional accuracy and shape fidelity, using standard procedures and also directional statistics. Line feature comparison has been undertaken using buffering techniques and statistics, whilst shape metrics, including moments invariant, have been applied to assess polygon matching. The analyses are presented with a user-friendly interface which eases data input, computation and output of results, and assists in interpretation of the comparison. The results show that a comparison of positional and shape characteristics of OS data or GDS data, with those of OSM data, indicates that their integration for large scale mapping applications is not viable.
Recently, renewable energy (RE), such as solar energy, sources have proven their importance as an alternative source of fuel. The utilizing of solar energy can contribute to move the world towards relying on clean energy to curb global warming. However, the placement of solar farms is a major priority for planners as it is a critical factor in the succession energy project. This study combines one of the multi-criteria decision-making techniques Analytic Hierarchy Process (AHP) and Geographic Information System (GIS) to assess the suitability of land for establishing solar farms in Iraq. Numerous climatic, geomorphological, economic, and environmental criteria and some exclusionary constraints have been adopted in modeling process. It is supported by expert knowledge and a comprehensive literature review. The results showed that approximately 19% of the study area are optimal areas for installing solar farms. The southern, southeastern, and a few western regions obtained the largest part of the suitable lands. Furthermore, this approach can be adapted easily to cover different criteria and different weights in order to assist planners in deciding solar farm locations.
A Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated visualization techniques than the conventional tabular data format. To achieve the main objective of this research, two study areas have been chosen: the old constructionbridge (Al-Qadisiyah bridge) and the newly constructed bridge (Barboty bridge). Both of them are in Al-Muthanna city \ Iraq. The data collection process was achieved in two stages: the first stage is providing a georeferenced satellite image for each study area for the purpose of producing a two-dimensional map. The second stage includes the field surveying process by total station and level instruments. GIS have been used to create a comprehensive database (Geodatabase) for both study areas. Geostatistical analysis was carried out in which the settlement areas of both study areas were defined by producing a colour image. The statistical tables for these analyses showed that the highest decline in the elevation reached at Al-Qadisiyah bridge to 19 mm in the middle of the bridge which is coloured as a red areas. On the other hand, it was found that the highest decline in the elevation of the Barboty bridge is 16 mm in the last part of steel space which is also coloured as a red areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.