ObjectiveThe relationship between autoimmune diseases and the gut microbiome has been intensively studied, and several autoimmunity-associated bacterial taxa have been identified. However, much less is known about the roles of the gut virome in autoimmune diseases.MethodsHere, we performed a whole gut virome analysis based on the shotgun sequencing of 476 Japanese which included patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis and healthy control subjects.ResultsOur case–control comparison of the viral abundance revealed that crAss-like phages, which are one of the main components of a healthy gut virome, significantly decreased in the gut of the patients with autoimmune disease, specifically the patients with RA and SLE. In addition, Podoviridae significantly decreased in the gut of the patients with SLE. To understand how these viruses affected the bacteriome, we performed a quantitative virus–bacterium association analysis and clustered regularly interspaced short palindromic repeat-based virus–bacterium interaction analysis. We identified a symbiosis between Podoviridae and Faecalibacterium. In addition, multiple bacterial targets of crAss-like phages were identified (eg, Ruminococcus spp).ConclusionOur data suggest that the gut virome can affect our body either directly or via bacteria. Our analyses have elucidated a previously missing part of the autoimmunity-associated gut microbiome and presented new candidates that contribute to the development of autoimmune diseases.
ObjectiveAlteration of the gut microbiome has been linked to the pathogenesis of systemic lupus erythematosus (SLE). However, a comprehensive view of the gut microbiome in SLE and its interaction with the host remains to be revealed. This study aimed to reveal SLE-associated changes in the gut microbiome and its interaction with the host by a comprehensive metagenome-wide association study (MWAS) followed by integrative analysis.MethodsWe performed a MWAS of SLE based on shotgun sequencing of the gut microbial DNA from Japanese individuals (Ncase=47, Ncontrol=203). We integrated the result of the MWAS with the genome-wide association study (GWAS) data and plasma metabolite data.ResultsVia species level phylogenetic analysis, we identified and validated increases of Streptococcus intermedius and Streptococcus anginosus in the patients with SLE. Microbial gene analysis revealed increases of Streptococcus-derived genes including one involved in redox reaction. Additionally, microbial pathways related to sulfur metabolism and flagella assembly were altered in the patients with SLE. We identified an overlap in the enriched biological pathways between the metagenome and the germline genome by comparing the result of the MWAS and the GWAS of SLE (ie, MWAS-GWAS interaction). α-diversity and β-diversity analyses provided evidence of dysbiosis in the metagenome of the patients with SLE. Microbiome-metabolome association analysis identified positive dosage correlation of acylcarnitine with Streptococcus intermedius, an SLE-associated taxon.ConclusionOur MWAS followed by integrative analysis revealed SLE-associated changes in the gut microbiome and its interaction with the host, which contribute to our understanding of the relationship between the microbiome and SLE.
Lupus enteritis and lupus cystitis are relatively rare manifestations of systemic lupus erythematosus. Some patients develop severe complications such as bowel perforation, infarction, obstruction, or irreversible bladder dysfunction. Early diagnosis is critical for management of lupus enteritis and cystitis. We report a 48-year-old Japanese man who presented with initial manifestations of abdominal pain, severe diarrhea, and bloody feces. The diagnosis was delayed due to atypical initial symptoms, resulting in clinical worsening. Physicians should be aware of typical computed tomography findings of lupus enteritis and lupus cystitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.