Recently developed computational models can estimate plasma, hepatic, and renal concentrations of industrial chemicals in rats. Typically, the input parameter values (i.e., the absorption rate constant, volume of systemic circulation, and hepatic intrinsic clearance) for simplified physiologically based pharmacokinetic (PBPK) model systems are calculated to give the best fit to measured or reported in vivo blood substance concentration values in animals. The purpose of the present study was to estimate in silico these three input pharmacokinetic parameters using a machine learning algorithm applied to a broad range of chemical properties obtained from several cheminformatics software tools. These in silico estimated parameters were then incorporated into PBPK models for predicting internal exposures in rats. Following this approach, simplified PBPK models were set up for 246 drugs, food components, and industrial chemicals with a broad range of chemical structures. We had previously generated PBPK models for 158 of these substances, whereas 88 for which concentration series data were available in the literature were newly modeled. The values for the absorption rate constant, volume of systemic circulation, and hepatic intrinsic clearance could be generated in silico by equations containing between 14 and 26 physicochemical properties. After virtual oral dosing, the output concentration values of the 246 compounds in plasma, liver, and kidney from rat PBPK models using traditionally determined and in silico estimated input parameters were well correlated (r ≥ 0.83). In summary, by using PBPK models consisting of chemical receptor (gut), metabolizing (liver), excreting (kidney), and central (main) compartments with in silico-derived input parameters, the forward dosimetry of new chemicals could provide the plasma/tissue concentrations of drugs and chemicals after oral dosing, thereby facilitating estimates of hematotoxic, hepatotoxic, or nephrotoxic potential as a part of risk assessment.
Bromobenzene is an industrial solvent that elicits toxicity predominantly in the liver. In this study, the hepatic concentrations of bromobenzene and its related compounds 1,2dibromobenzene and 1,4-dibromobenzene in humanized-liver mice were predicted after single oral administrations by simplified physiologically based pharmacokinetic (PBPK) models that had been set up on experimental plasma concentrations after single oral doses of 100 mg/kg to rats and 100−250 mg/kg to control mice and humanized-liver mice. The output values by simplified PBPK models were consistent with measured blood substrate concentrations in rats, control mice, and humanized-liver mice with suitable input parameter values derived from in silico prediction and the literature or estimated by fitting the measured plasma substrate concentrations. The predicted time-dependent hepatic concentrations after virtual administrations in humanized-liver mice were partly confirmed with single measured hepatic concentrations of bromobenzene and 1,4-dibromobenzene 2 h after oral doses of 150−250 mg/kg to humanized-liver mice. Moreover, leaked human albumin mRNA, a marker of the extent of human hepatic injuries, in humanized-liver mouse plasma was detected after oral administration of bromobenzene, 1,2-dibromobenzene, and 1,4dibromobenzene. These results suggest that dosimetry approaches for determining tissue and/or blood exposures of hepatic toxicants bromobenzene, 1,2-dibromobenzene, and 1,4-dibromobenzene in humanized-liver mice were useful after virtual oral doses using simplified PBPK models. Using simplified PBPK models and plasma data from humanized-liver mice has potential to predict and evaluate the hepatic toxicity of bromobenzenes and related compounds in humanized-liver mice and in humans.
Naturally occurring food substances may constitute safety hazards. The risks associated with plant-derived pyrrolizidine alkaloids have been extensively evaluated. Petasites japonicus (common Japanese name, fuki) is a widely consumed water-soluble pyrrolizidine alkaloid-producing plant. In this study, neopetasitenine (acetylfukinotoxin) was selected as a model food substrate (for which human pharmacokinetics were estimated) because of its high concentration in fuki, along with petasitenine (fukinotoxin), its carcinogenic deacetylated metabolite. Although neopetasitenine was rapidly absorbed and converted to petasitenine after oral administration of 1.0 mg/kg in rats, petasitenine was slowly cleared from plasma. Forward dosimetry was conducted using in silico simplified physiologically based pharmacokinetic (PBPK) modeling formulated on experimental pharmacokinetic rat data. From ~2 hr after the oral administration of neopetasitenine in rats, the plasma concentrations of petasitenine were higher than those of neopetasitenine under the present conditions. A human PBPK model was established following an allometric scaling approach applied to rat parameters (without considering interspecies factors) to estimate human intrinsic hepatic clearances from empirical rat values. Human in silico neopetasitenine and petasitenine plasma concentration curves were simulated after daily oral administrations of 3.0 and 1.3 mg/kg neopetasitenine. These doses were taken from reported acute/short-term cases of pyrrolizidine alkaloid toxicity. In vitro hepatotoxicity of neopetasitenine and petasitenine was caused by their high concentrations in the medium for human hepatocyte-like cell line HepaRG cells as an index of lactate dehydrogenase leakage. Neopetasitenine was estimated to be rapidly absorbed and converted to deacetylated carcinogenic petasitenine, even after hepatotoxic doses of 1.0 mg/kg in humans. If the water-soluble pyrrolizidine alkaloid-producing plant P. japonicus were daily consumed as food, current simulation results suggest that dangerous amounts of deacetylated petasitenine could be continuously present in human plasma.
A simplified physiologically based pharmacokinetic (PBPK) model consisting of chemical receptor, metabolizing and/or excreting, and central compartments was recently proposed. In the current study, this type of PBPK model was set up for perfluorooctane sulfonate, an environmental toxicant with liver effects, as a model compound; the model was then used to estimate tissue concentrations. The pharmacokinetic parameter input values for the model were calculated to give the best fit to reported/measured blood substrate concentrations in rats. The maximum concentrations and areas under the concentration versus time curves in plasma, liver, and kidney extrapolated using PBPK models for perfluorobutane sulfonic acid, perfluorohexane sulfonic acid, and perfluorooctane sulfonic acid were consistent with the reported mean values in rats. Using the rat models and scaled-up human PBPK models, some accumulation of perfluorooctane sulfonic acid in plasma and liver was seen after repeated doses. The reported 50th and 95th percentile concentrations of perfluorooctane sulfonic acid in human blood (0.0048 and 0.0183 ng/mL, respectively) in the general population underwent reverse dosimetry analysis using our PBPK models. These human blood concentrations potentially imply exposures of 0.041 and 0.16 µg/kg/day, respectively, for 90 days, values that are roughly similar to the reference dose (0.02 μg/kg/day) with an uncertainty factor of 30. These results indicate the relatively good estimates for tissue and blood exposures of chemical substrates after oral doses generated using the latest PBPK models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.