Identification of alleles that improve crop production and lead to higher-yielding varieties are needed for food security. Here we show that the quantitative trait locus WFP (WEALTHY FARMER'S PANICLE) encodes OsSPL14 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 14, also known as IPA1). Higher expression of OsSPL14 in the reproductive stage promotes panicle branching and higher grain yield in rice. OsSPL14 controls shoot branching in the vegetative stage and is affected by microRNA excision. We also demonstrate the feasibility of using the OsSLP14(WFP) allele to increase rice crop yield. Introduction of the high-yielding OsSPL14(WFP) allele into the standard rice variety Nipponbare resulted in increased rice production.
The use of fertilizer results in tall rice plants that are susceptible to lodging and results in reduced plant yields. In this study, using chromosome segment substitution lines, we identified an effective quantitative trait loci (QTL) for culm strength, which was designated STRONG CULM2 (SCM2). Positional cloning of the gene revealed that SCM2 was identical to ABERRANT PANICLE ORGANIZATION1 (APO1), a gene previously reported to control panicle structure. A near-isogenic line carrying SCM2 showed enhanced culm strength and increased spikelet number because of the pleiotropic effects of the gene. Although SCM2 is a gain-of-function mutant of APO1, it does not have the negative effects reported for APO1 overexpression mutants, such as decreased panicle number and abnormal spikelet morphology. The identification of lodging-resistance genes by QTL analysis combined with positional cloning is a useful approach for improving lodging resistance and overall productivity in rice.
Rice grain number directly affects crop yield. Identifying alleles that improve panicle architecture would greatly aid the development of high-yield varieties. Here, we show that the quantitative trait locus qSrn7 contains rice FRIZZY PANICLE (FZP), a previously reported gene encoding an ERF transcription factor that promotes floral transition. Reduced expression of FZP in the reproductive stage increases the extent of higher order branching of the panicle, resulting in increased grain number. Genotype analysis of this gene in cultivars from the publicly available National Institute of Agrobiological Sciences (NIAS) Core Collection demonstrated that the extent of higher order branching, especially in the upper panicle, was increased in those cultivars carrying the FZP allele associated with qSrn7. Furthermore, chromosome segment substitution lines resulting from a cross between Koshihikari and Kasalath, the latter of which carries qSrn7/FZP, also showed that upper panicle higher order branching and grain yield were increased by qSrn7/FZP. Our findings indicate that qSrn7/FZP influences panicle branching pattern and is thus useful in the breeding of high-yield rice varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.