A novel nanofibrous gel electrolyte was prepared via gelatin electrospinning for use as a nonaqueous electrolyte in electric double-layer capacitors (EDLCs). An electrospinning technique with a 25 wt% gelatin solution was applied to produce gelatin electrospun (GES) nanofiber electrolytes. Structural analysis of the GES products showed a clearly nanofibrous structure with fiber diameters in the 306.2–428.4 nm range and exhibiting high thermal stability, high tensile strength, and a stable form of nanofibrous structure after immersion in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4). After testing over a range of spinning times, GES electrolytes that were produced at 25 min (GES-25) had a suitable thickness for the assembly of EDLC with the optimized tensile properties and were used to fabricate EDLC test cells with EMImBF4. These test cells were compared to those with pure EMImBF4 and a separator as an electrolyte. The electrochemical properties of the test cells were characterized by charge-discharge testing, discharge capacitance, and alternative current (AC) impedance measurements. AC impedance measurements showed that the test cell with the GES-25/EMImBF4 gel electrolyte showed slightly poorer contact with the electrode when compared to that with pure EMImBF4, whereas exhibited comparable IR drop and discharge capacitance (calculated capacitance retention was 56.6%). The results demonstrated that this novel gel electrolyte can be used as a nonaqueous electrolyte in order to improve the safety in EDLCs.
A novel gel polymer electrolyte based on chitosan with 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF 4) is prepared with a new procedure and applied to electric double layer capacitors (EDLCs). The chitosan-based gel polymer electrolyte causes less liquid leakage than the previous one. In this electrolyte system, EMImBF 4 plays the roles of both a solvent for dissolving chitosan and a charge carrier ion for EDLC application. The present chitosan solution for gel polymer electrolytes shows acidity, and its acidity is raised by increasing the amount of EMImBF 4 and the preparation temperature. The electrochemical stability of the electrolyte is decreased as the acidity of its chitosan solution increases. At 25°C, an EDLC cell with the electrolyte containing 70 wt.% EMImBF 4 showed good charge-discharge performance and lower electrode/electrolyte interfacial resistance than those of a liquid-phase EMImBF 4 system.
Insect juvenile hormone (JH) mimics (JHMs) are known to have ovicidal effects if applied to adult females or eggs. Here, we examined the effects of exogenous JHMs on embryonic development of the bean bug, Riptortus pedestris. The expression profiles of JH early response genes and JH biosynthetic enzymes indicated that JH titer was low for the first 3 days of the egg stage and increased thereafter. Application of JH III skipped bisepoxide (JHSB 3 ) or JHM on Day 0 eggs when JH titer was low caused reduced hatchability, and the embryos mainly arrested in mid-or late embryonic stage. Application of JHMs on Day 5 eggs also resulted in an arrest, but this was less effective compared with Day 0 treatment. Interestingly, ovicidal activity of synthetic JHMs was much lower than that of JHSB 3 . This study will contribute to developing novel insecticides that are selective among insect species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.