A major early event in papillary thyroid carcinogenesis is constitutive activation of the mitogen-activated protein kinase signaling pathway caused by alterations of a single gene, typically rearrangements of the RET and NTRK1 genes or point mutations in the BRAF and RAS genes. In childhood papillary thyroid cancer, regardless of history of radiation exposure, RET/PTC rearrangements are a major event. Conversely, in adult-onset papillary thyroid cancer among the general population, the most common molecular event is BRAF V600E point mutation, not RET/PTC rearrangements. To clarify which gene alteration, chromosome aberration, or point mutation preferentially occurs in radiation-associated adultonset papillary thyroid cancer, we have performed molecular analyses on RET/PTC rearrangements and BRAF V600E mutation in 71 papillary thyroid cancer cases among atomic bomb survivors (including 21 cases not exposed to atomic bomb radiation), in relation to radiation dose as well as time elapsed since atomic bomb radiation exposure. RET/PTC rearrangements showed significantly increased frequency with increased radiation dose (P trend = 0.002). In contrast, BRAF V600E mutation was less frequent in cases exposed to higher radiation dose (P trend < 0.001). Papillary thyroid cancer subjects harboring RET/PTC rearrangements developed this cancer earlier than did cases with BRAF V600E mutation (P = 0.03). These findings were confirmed by multivariate logistic regression analysis. These results suggest that RET/PTC rearrangements play an important role in radiation-associated thyroid carcinogenesis.
PEPT1 and PEPT2 are H+-coupled peptide transporters expressed preferentially in the intestine and kidney, respectively, which mediate uphill transport of oligopeptides and peptide-like drugs such as β-lactam antibiotics. In the present study, we have compared the recognition of β-lactam antibiotics by LLC-PK1 cells stably transfected with PEPT1 or PEPT2 cDNA. Cyclacillin (aminopenicillin) and ceftibuten (anionic cephalosporin without an α-amino group) showed potent inhibitory effects on the glycylsarcosine uptake in the PEPT1-expressing cells. Other β-lactams, such as cephalexin, cefadroxil, and cephradine (aminocephalosporins), inhibited modestly the PEPT1-mediated glycylsarcosine uptake. Except for ceftibuten, these β-lactams showed much more potent inhibitions on the glycylsarcosine uptake via PEPT2 than via PEPT1. Comparison of the inhibition constant ( K i) values between cefadroxil and cephalexin suggested that the hydroxyl group at the NH2-terminal phenyl ring increased affinity for both PEPT1 and PEPT2. It is concluded that PEPT2 has a much higher affinity for β-lactam antibiotics having an α-amino group than PEPT1 and that substituents at the NH2-terminal side chain of these drugs are involved in the recognition by both peptide transporters.
Recently, in addition to DNA, RNA extracted from archival tissue specimens has become an invaluable source of material for molecular biological analysis. Successful amplification with PCR/RT-PCR is problematic when using amplicons of short size due to degradation of DNA or RNA. We established an improved method for efficient RT-PCR amplification of RNA extracted from archival formalin-fixed, paraffin-embedded tissue by the elimination of RNA modification and the restoration of RNA template activity. Namely, the preheating in citrate buffer (pH 4.0) of RNA extracted from long-term preserved tissue specimens resulted in significantly increased efficiency of RT-PCR.
Background: We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAF V600E ) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. Methods: The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed ( > 0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription-polymerase chain reaction and 5¢ rapid amplification of cDNA ends (5¢ RACE). Results: We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK rearrangements, being observed in 6 of 10 PTC cases with ALK rearrangements versus 2 of 15 cases with no ALK rearrangements. The six radiation-exposed cases of PTC harboring both ALK rearrangements and solid/trabecular-like architecture were associated with higher radiation doses and younger ages at the time of the A-bombing and at diagnosis compared to the other 19 PTC with no detectable gene alterations. Conclusion: Our findings suggest that ALK rearrangements are involved in the development of radiationinduced adult-onset PTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.