The genomes of the Tomato mosaic virus and many other plant and animal positive-strand RNA viruses of agronomic and medical importance encode superfamily 1 helicases. Although helicases play important roles in viral replication, the crystal structures of viral superfamily 1 helicases have not been determined. Here, we report the crystal structure of a fragment (S666 to Q1116) of the replication protein from Tomato mosaic virus. The structure reveals a novel N-terminal domain tightly associated with a helicase core. The helicase core contains two RecA-like ␣/ domains without any of the accessory domain insertions that are found in other superfamily 1 helicases. The N-terminal domain contains a flexible loop, a long ␣-helix, and an antiparallel sixstranded -sheet. On the basis of the structure, we constructed deletion mutants of the S666-to-Q1116 fragment and performed split-ubiquitin-based interaction assays in Saccharomyces cerevisiae with TOM1 and ARL8, host proteins that are essential for tomato mosaic virus RNA replication. The results suggested that both TOM1 and ARL8 interact with the long ␣-helix in the Nterminal domain and that TOM1 also interacts with the helicase core. Prediction of secondary structures in other viral superfamily 1 helicases and comparison of those structures with the S666-to-Q1116 structure suggested that these helicases have a similar fold. Our results provide a structural basis of viral superfamily 1 helicases.
Angiotensin-converting enzyme 2 (ACE2) is a receptor for cell entry of SARS-CoV-2, and recombinant soluble ACE2 protein inhibits SARS-CoV-2 infection as a decoy. ACE2 is a carboxypeptidase that degrades angiotensin II, thereby improving the pathologies of cardiovascular disease or acute lung injury. Here we show that B38-CAP, an ACE2-like enzyme, is protective against SARS-CoV-2-induced lung injury. Endogenous ACE2 expression is downregulated in the lungs of SARS-CoV-2-infected hamsters, leading to elevation of angiotensin II levels. Recombinant Spike also downregulates ACE2 expression and worsens the symptoms of acid-induced lung injury. B38-CAP does not neutralize cell entry of SARS-CoV-2. However, B38-CAP treatment improves the pathologies of Spike-augmented acid-induced lung injury. In SARS-CoV-2-infected hamsters or human ACE2 transgenic mice, B38-CAP significantly improves lung edema and pathologies of lung injury. These results provide the first in vivo evidence that increasing ACE2-like enzymatic activity is a potential therapeutic strategy to alleviate lung pathologies in COVID-19 patients.
Heart-type fatty-acid-binding protein (FABP3), which is a cytosolic protein abundantly found in cardiomyocytes, plays a role in trafficking fatty acids throughout cellular compartments by reversibly binding intracellular fatty acids with relatively high affinity. The fluorescent probe 1-anilinonaphthalene-8-sulfonate (ANS) is extensively utilized for examining the interaction of ligands with fatty-acid-binding proteins. The X-ray structure of FABP3 was determined in the presence of ANS and revealed the detailed ANS-binding mechanism. Furthermore, four water molecules were clearly identified in the binding cavity. Through these water molecules, the bound ANS molecule forms indirect hydrogen-bond interactions with FABP3. The adipocyte-type fatty-acid-binding protein (FABP4) exhibits 67% sequence identity with FABP3 and its crystal structure is almost the same as that of FABP3. However, FABP4 can bind with a higher affinity to ANS than FABP3. To understand the difference in their ligand specificities, a structural comparison was performed between FABP3-ANS and FABP4-ANS complexes. The result revealed that the orientation of ANS binding to FABP3 is completely opposite to that of ANS binding to FABP4, and the substitution of valine in FABP4 to leucine in FABP3 may result in greater steric hindrance between the side-chain of Leu115 and the aniline ring of ANS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.