The current concept of smart cities influences urban planners and researchers to provide modern, secured and sustainable infrastructure and gives a decent quality of life to its residents. To fulfill this need, video surveillance cameras have been deployed to enhance the safety and well-being of the citizens. Despite technical developments in modern science, abnormal event detection in surveillance video systems is challenging and requires exhaustive human efforts. In this paper, we focus on evolution of anomaly detection followed by survey of various methodologies developed to detect anomalies in intelligent video surveillance. Further, we revisit the surveys on anomaly detection in the last decade. We then present a systematic categorization of methodologies for anomaly detection. As the notion of anomaly depends on context, we identify different objects-of-interest and publicly available datasets in anomaly detection. Since anomaly detection is a time-critical application of computer vision, we explore the anomaly detection using edge devices and approaches explicitly designed for them. The confluence of edge computing and anomaly detection for real-time and intelligent surveillance applications is also explored. Further, we discuss the challenges and opportunities involved in anomaly detection using the edge devices.
The current concept of Smart Cities influences urban planners and researchers to provide modern, secured and sustainable infrastructure and give a decent quality of life to its residents. To fulfill this need video surveillance cameras have been deployed to enhance the safety and well-being of the citizens. Despite technical developments in modern science, abnormal event detection in surveillance video systems is challenging and requires exhaustive human efforts. In this paper, we surveyed various methodologies developed to detect anomalies in intelligent video surveillance. Firstly, we revisit the surveys on anomaly detection in the last decade. We then present a systematic categorization of methodologies developed for ease of understanding. Considering the notion of anomaly depends on context, we identify different objects-of-interest and publicly available datasets in anomaly detection. Since anomaly detection is considered a time-critical application of computer vision, our emphasis is on anomaly detection using edge devices and approaches explicitly designed for them. Further, we discuss the challenges and opportunities involved in anomaly detection at the edge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.