Serine/threonine phosphorylation of the nonstructural protein 5 (NS5) is a conserved feature of flaviviruses, but the kinase(s) responsible and function(s) remain unknown. Mass spectrometry was used to compare the phosphorylation sites of the NS5 proteins of yellow fever virus (YFV) and dengue virus (DENV), two flaviviruses transmitted by mosquitoes. Seven DENV phosphopeptides were identified, but only one conserved phosphoacceptor site (threonine 449 in DENV) was identified in both viruses. This site is predicted to be a protein kinase G (PKG) recognition site and is a strictly conserved serine/threonine phosphoacceptor site in mosquito-borne flaviviruses. In contrast, in tick-borne flaviviruses, this residue is typically a histidine. A DENV replicon engineered to have the tick-specific histidine residue at this position is replication defective. We show that DENV NS5 purified from Escherichia coli is a substrate for PKG in vitro and facilitates the autophosphorylation of PKG as seen with cellular substrates. Phosphorylation in vitro by PKG also occurs at threonine 449. Activators and inhibitors of PKG modulate DENV replication in cell culture but not replication of the tick-borne langat virus. Collectively, these data argue that PKG mediates a conserved serine/threonine phosphorylation event specifically for flaviviruses spread by mosquitoes.The flavivirus genus contains many medically important species, including dengue virus (DENV), yellow fever virus (YFV), West Nile virus (WNV), and tick-borne encephalitis virus (TBEV). More than 2 billion people are at risk of infection by DENV alone, leading to an estimated 50 million cases annually, which may increase further as the range of the mosquito vector expands with urbanization (24). While disease from mosquito-borne flaviviruses is particularly common, there are other flaviviral human pathogens that exist with transmission cycles that do not involve mosquitoes. Tick-borne transmission is the other well-described route, but non-arthropodborne routes also exist (for example, bats). It is likely that each transmission route has genetic adaptations that facilitate that route, but such changes are not yet understood (7).Serine/threonine phosphorylation is a conserved feature across all three genera of the family Flaviviridae, including the genus flavivirus (the others genera being pestivirus and hepacivirus). Among the features of Flaviviridae, the most-studied examples are the multiple phosphorylations of nonstructural protein 5A (NS5A) of hepatitis C virus, which exists in both basal (termed p56) and hyperphosphorylated (termed p58) states mediated by multiple kinases that both are necessary for and limit replication (14,18,23). Phosphorylation of NS5B, the RNA-dependent RNA polymerase (RdRP), has also been shown to affect replicon activity (10). In the genus flavivirus, several mosquito-borne viruses (DENV, WNV, and YFV) and at least one tick-borne encephalitis virus are known to have phosphorylated forms of nonstructural protein NS5 (2,9,11,13,19). In the genus...
The plus-strand RNA genome of Sindbis virus (SINV) encodes four nonstructural proteins (nsP1 to nsP4) that are involved in the replication of the viral RNA. The ϳ800-amino-acid nsP2 consists of an N-terminal domain with nucleoside triphosphatase and helicase activities and a C-terminal protease domain. Recently, the structure determined for Venezuelan equine encephalitis virus nsP2 indicated the presence of a previously unrecognized methyltransferase (MTase)-like domain within the C-terminal ϳ200 residues and raised a question about its functional importance. To assess the role of this MTase-like region in viral replication, highly conserved arginine and lysine residues were mutated to alanine. The plaque phenotypes of these mutants ranged from large/wild-type to small plaques with selected mutations demonstrating temperature sensitive lethality. The proteolytic polyprotein processing activity of nsP2 was unaffected in most of the mutants. Some of the temperature-sensitive mutants showed reduction in the minus-strand RNA synthesis, a function that has not yet been ascribed to nsP2. Mutation of SINV residue R615 rendered the virus noncytopathic and incapable of inhibiting the host cell translation but with no effects on the transcriptional inhibition. This property differentiated the mutation at R615 from previously described noncytopathic mutations. These results implicate nsP2 in regulation of minus-strand synthesis and suggest that different regions of the nsP2 MTase-like domain differentially modulate host defense mechanisms, independent of its role as the viral protease.Sindbis virus (SINV) is the prototype alphavirus of the family Togaviridae. Members of this family have a plus-strand RNA genome of about 12 kb in length (68) and include important animal and human pathogens (29,70,78). Alphaviruses are transmitted to vertebrate hosts primarily by mosquito vectors. In vertebrate hosts an acute disease, characterized by high-titer viremia, develops and elicits a strong immune response (28). SINV can replicate lytically in most mammalian cell lines while establishing a chronic infection in mosquito cell lines (70).Upon virus entry, the 11.7-kb SINV genome is translated by the cellular translational machinery into nonstructural proteins nsP1 to nsP4 encoded by the 5Ј two-thirds of the genome. These proteins, along with unknown host factors, form the replicase/transcriptase complex responsible for replication of the viral genome and transcription of the viral subgenomic RNA, which is coterminal with the 3Ј one-third of the genome and codes for the structural proteins (68, 69). In mammalian cell lines, SINV replication has been shown to lead to development of cytopathic effects (CPE) and cell death by 24 to 48 h postinfection (22). The CPE is a culmination of several physiological and morphological changes caused by the virus infection (34). Using replicons (viral genomes that lack structural proteins), it has been shown that structural proteins are dispensable for both genome replication and for development of CP...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.