The immediate early protein tristetraprolin (TTP) is required to prevent inappropriate production of the cytokine TNF-a, and is a member of a zinc ®nger protein family that is associated with RNA binding. TTP expression is induced by TNF-a, and evidence indicates that TTP can bind and destabilize the TNF-a mRNA. TTP and the closely related TIS11b and TIS11d proteins are evolutionarily conserved, however, and induced transiently in various cell types by numerous diverse stimuli, suggesting that they have additional functions. Supporting this idea, continuous expression of each TTP/TIS11 protein at physiological levels causes apoptotic cell death. By various criteria, this cell death appears analogous to apoptosis induced by certain oncoproteins. It is also dependent upon the zinc ®ngers, suggesting that it involves action on appropriate cellular targets. TTP but not TIS11b or TIS11d also sensitizes cells to induction of apoptosis by TNF-a. The data suggest that the TTP and TIS11 immediate early proteins have similar but distinct eects on growth or survival pathways, and that TTP might in¯uence TNF-a regulation at multiple levels.
Intestinal ischemia followed by reperfusion leads to local and remote organ injury attributed to inflammatory response during the reperfusion phase. The extent to which ischemia contributes to ischemia/reperfusion injury has not been thoroughly studied. After careful evaluation of intestinal tissue following 30 min of ischemia, we noticed significant local mucosal injury in wild-type mice. This injury was drastically reduced in C3-deficient mice, suggesting C3 involvement. Depletion of circulating complement with cobra venom factor eliminated, as expected, injury recorded at the end of the reperfusion phase but failed to eliminate injury that occurred during the ischemic phase. Immunohistochemical studies showed that tissue damage during ischemia was associated with increased expression of C3/C3 fragments primarily in the intestinal epithelial cells, suggesting local involvement of complement. In vitro studies using Caco2 intestinal epithelial cells showed that in the presence of LPS or exposure to hypoxic conditions the cells produce higher C3 mRNA as well as C3a fragment. Caco2 cells were also noted to produce cathepsins B and L, and inhibition of cathepsins suppressed the release of C3a. Finally, we found that mice treated with a cathepsin inhibitor and cathepsin B-deficient mice suffer limited intestinal injury during the ischemic phase. To our knowledge, our findings demonstrate for the first time that significant intestinal injury occurs during ischemia prior to reperfusion and that this is due to activation of C3 within the intestinal epithelial cells in a cathepsin-dependent manner. Modulation of cathepsin activity may prevent injury of organs exposed to ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.