We use asymptotically optimal adaptive numerical methods (here specifically a wavelet scheme) for snapshot computations within the offline phase of the Reduced Basis Method (RBM). The resulting discretizations for each snapshot (i.e., parameter-dependent) do not permit the standard RB 'truth space', but allow for error estimation of the RB approximation with respect to the exact solution of the considered parameterized partial differential equation.The residual-based a posteriori error estimators are computed by an adaptive dual wavelet expansion, which allows us to compute a surrogate of the dual norm of the residual. The resulting adaptive RBM is analyzed. We show the convergence of the resulting adaptive Greedy method. Numerical experiments for stationary and instationary problems underline the potential of this approach.
A well known result from functional analysis states that any compact operator between Hilbert spaces admits a singular value decomposition (SVD). This decomposition is a powerful tool that is the workhorse of many methods both in mathematics and applied fields. A prominent application in recent years is the approximation of high-dimensional functions in a low-rank format. This is based on the fact that, under certain conditions, a tensor can be identified with a compact operator and SVD applies to the latter. One key assumption for this application is that the tensor product norm is not weaker than the injective norm. This assumption is not fulfilled in Sobolev spaces, which are widely used in the theory and numerics of partial differential equations. Our goal is the analysis of the SVD in Sobolev spaces.
This work consists of two parts. In this manuscript (part I), we address low-rank approximations and minimal subspaces in
H^1
. We analyze the
H^1
-error of the SVD performed in the ambient
L^2
-space. In part II, we will address variants of the SVD in norms stronger than the
L^2
-norm. We will provide a few numerical examples that support our theoretical findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.