SARS-CoV-2 Delta and Omicron are globally relevant variants of concern. Although individuals infected with Delta are at risk of developing severe lung disease, infection with Omicron often causes milder symptoms, especially in vaccinated individuals1,2. The question arises of whether widespread Omicron infections could lead to future cross-variant protection, accelerating the end of the pandemic. Here we show that without vaccination, infection with Omicron induces a limited humoral immune response in mice and humans. Sera from mice overexpressing the human ACE2 receptor and infected with Omicron neutralize only Omicron, but not other variants of concern, whereas broader cross-variant neutralization was observed after WA1 and Delta infections. Unlike WA1 and Delta, Omicron replicates to low levels in the lungs and brains of infected animals, leading to mild disease with reduced expression of pro-inflammatory cytokines and diminished activation of lung-resident T cells. Sera from individuals who were unvaccinated and infected with Omicron show the same limited neutralization of only Omicron itself. By contrast, Omicron breakthrough infections induce overall higher neutralization titres against all variants of concern. Our results demonstrate that Omicron infection enhances pre-existing immunity elicited by vaccines but, on its own, may not confer broad protection against non-Omicron variants in unvaccinated individuals.
SARS-CoV-2 Delta and Omicron strains are the most globally relevant variants of concern (VOCs). While individuals infected with Delta are at risk to develop severe lung disease1, Omicron infection causes less severe disease, mostly upper respiratory symptoms2,3. The question arises whether rampant spread of Omicron could lead to mass immunization, accelerating the end of the pandemic. Here we show that infection with Delta, but not Omicron, induces broad immunity in mice. While sera from Omicron-infected mice only neutralize Omicron, sera from Delta-infected mice are broadly effective against Delta and other VOCs, including Omicron. This is not observed with the WA1 ancestral strain, although both WA1 and Delta elicited a highly pro-inflammatory cytokine response and replicated to similar titers in the respiratory tracts and lungs of infected mice as well as in human airway organoids. Pulmonary viral replication, pro-inflammatory cytokine expression, and overall disease progression are markedly reduced with Omicron infection. Analysis of human sera from Omicron and Delta breakthrough cases reveals effective cross-variant neutralization induced by both viruses in vaccinated individuals. Together, our results indicate that Omicron infection enhances preexisting immunity elicited by vaccines, but on its own may not induce broad, cross-neutralizing humoral immunity in unvaccinated individuals.
Both physiological homeostasis and pathological disease processes in the lung typically result from complex, yet coordinated multicellular responses that are synchronized via paracrine and endocrine intercellular communication pathways. Of late, extracellular vesicles have emerged as important information shuttles that can coordinate and disseminate homeostatic and disease signals. In parallel, extracellular vesicles in biological fluids such as sputum, mucus, epithelial lining fluid, edema fluid, the pulmonary circulation, pleural fluid, and lymphatics have emerged as promising candidate biomarkers for diagnosis and prognosis in lung disease. Extracellular vesicles are small, subcellular, membrane-bound vesicles containing cargos from parent cells such as lipids, proteins, genetic information, or entire organelles. These cargos endow extracellular vesicles with biologically active information or functions by which they can reprogram their respective target cells. Recent studies show that extracellular vesicles found in lung-associated biological fluids play key roles as biomarkers and effectors of disease. Conversely, administration of naïve or engineered extracellular vesicles with homeostatic or reparative effects may provide a promising novel protective and regenerative strategy to treat lung disease. To highlight this rapidly developing field, the American Journal of Physiology-Lung Cellular and Molecular Physiology is now launching a special Call for Papers on extracellular vesicles in lung health, disease, and therapy. This review aims to set the stage for this call by introducing extracellular vesicles and their emerging roles in lung physiology and pathobiology.
Transfusion-related acute lung injury (TRALI) is a hazardous transfusion complication with an associated mortality of 5-15%. We previously showed that stored (5 days; D5) but not fresh platelets (1 day; D1) cause TRALI via ceramide mediated endothelial barrier dysfunction. As biological ceramides are hydrophobic, extracellular vesicles (EVs) may be required to shuttle these sphingolipids from platelets to endothelial cells. Adding to complexity, EV formation in turn requires ceramide. We hypothesized that ceramide-dependent EV formation from stored platelets and EV-dependent sphingolipid shuttling induce TRALI. EVs formed during storage of murine platelets were enumerated, characterized for sphingolipids and applied in a murine TRALI model in vivo and for endothelial barrier assessment in vitro. D5-EVs were more abundant, had higher long chain ceramide (C16:0, C18:0, C20:0) and lower S1P content than D1-EVs. Transfusion of D5- but not D1-EVs induced characteristic signs of lung injury in vivo and endothelial barrier disruption in vitro. Inhibition or supplementation of ceramide-forming sphingomyelinase reduced or enhanced the formation of EVs, respectively, but did not alter the injuriousness per individual EV. Barrier failure was attenuated when EVs were abundant in or supplemented with S1P. Stored human platelet D4-EVs were more numerous compared with D2-EVs, contained more long chain ceramide and less S1P, and caused more EC barrier leak. Hence, platelet-derived EVs become more numerous and more injurious (more long chain ceramide, less S1P) during storage. Blockade of sphingomyelinase, EV elimination, or supplementation of S1P during platelet storage may present promising strategies for TRALI prevention.
Extracellular vesicles, specifically microparticles (MPs), are rapidly gaining attention for their capacity to act as biomarkers for diagnosis, prognosis, or responsiveness to therapy in lung disease, in keeping with the concept of precision medicine. However, MP analysis by high-sensitivity flow cytometry (FCM) is complicated by a lack of accurate means for MP enumeration. To address this gap, we report here an enhanced FCM MP gating and enumeration technique based on the use of novel engineered lipid bilayer microspheres (LBMs). By comparison of LBM-based MP enumeration with conventional bead- or fluorescent-based FCM enumeration techniques and a gravimetric consumption gold standard, we found LBMs to be superior to commercial bead preparations, showing the smallest fixed bias and limits of agreement in Bland Altman analyses. LBMs had simultaneous capacity to aid FCM enumeration of MPs in plasma, BAL, and cell culture supernatants. LBM enumeration detected differences in MP counts in mice exposed to intraperitoneal lipopolysaccharide or saline. LBMs provided for 1) higher sensitivity for gating MPs populations, 2) reduced background within MP gates, 3) more appropriate size, and 4) an inexpensive alternative amenable to different fluorescent tags. LBM-based MP enumeration was useful for a series of different FCM systems assessed, whereas LBM gating benefited high- but not low-sensitivity FCM systems compared with fluorescence gating. By offering exclusive advantages over current means of gating and enumerating MPs, LBMs are uniquely suited to realizing the potential of MPs as biomarkers in biological lung fluids and facilitating precision medicine in lung disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.