This research surveyed the effects of land use changes on flow nitrate pollution in the Talar River (northern Iran), using Landsat images of 1991 and 2013 and the Soil and Water Assessment Tool (SWAT). The results indicated that forest areas decreased by 14.9% and irrigated crops, dry land farming areas, range lands and residential areas increased by 46.8%, 31.1%, 4.7% and 17.5%, respectively. To calibrate and validate the studied period, the Nash Sutcliffe model efficiency (NSE) and coefficient of determination (R 2 ) were applied, ranging from 0.57 to 0.75 and from 0.62 to 0.76 for flow simulation and 0.84 and 0.63 and 0.75 and 0.83 for nitrate simulation, respectively. The results of land use scenarios indicated that respective water flow and nitrate loads increased by 34. 4% and 42.2% in 1991-2013 and may even increase by 42.3% and 55.9% in the simulated period of 2013-2050 in all sub-basins. It is likely that the main reason for these results was due to the increase in agricultural activities and the decrease in forestry areas. Our findings showed the useful combination of modelling techniques (land cover changes and SWAT) to develop valuable maps able to design correct land management plans and nature-based solutions for water quality of runoff water harvesting systems in the future.
Soil erosion is one of the key challenges in soil and water conservation. Vegetation that covers soil and organic and inorganic mulch is very useful for the control of erosion processes. This study examined treatment with wheat residual (as agriculture mulch) on infiltration, time to runoff, runoff coefficient, sediment concentration and soil erosion processes. The study has been conducted for sandy-loam soil taken from summer rangeland (Northern Iran) with simulated rainfall intensities of 50 and 100 mm h-1. The experiment was conducted in slopes of 30% in three replications with two amounts of wheat residual of 50 and 90 %. The results showed that conservation percent of soil erosion for wheat residual 50 and 90% was 61.68 and 73.25%, respectively (in rainfall intensity of 50 mm h-1). Also, the conservation percent of soil erosion for wheat residual of 50 and 90% cover was 70.68 and 90.55, respectively (in rainfall intensity of 100 mm h-1). It was concluded that the conservation treatments could reduce runoff coefficient, sediment concentration and soil erosion and increase the time to runoff and infiltration coefficient. This effect was significant on time for infiltration, sediment concentration and soil erosion variables (R2=0.99), time to runoff and runoff coefficient variables (R2=0.95). The interaction effects of rainfall intensity and soil conservation was significant for sediment concentration and soil erosion variables (R2=0.99).
Land use change is known as one of the main influencing factors on soil erosion and sediment production processes. The objective of the article is to study on how land use change impacts on soil erosion by using Intensity of Erosion and Outflow (IntErO) as a process-oriented soil erosion model. The study has been conducted under land use changes within the period of 1991–2014 in the Talar watershed located in northern Iran. The GIS environment was used to prepare the required maps including Digital Elevation Model (DEM), geology, land use, soil, and drainage network. The climatology data including average annual precipitation and air temperature as well as the volume of torrential rain were extracted from the data of meteorological stations located inside and around the study watershed. The results indicates that, within the period of 1991–2014, the forest area decreased by 12,478.04 ha (6%), while the other land uses including rainfed agriculture, rangeland, irrigated agriculture, and residential area increased by 7248.25, 4481.05, 476.00, and 273.95 ha, respectively. The estimated outflow with 100 year return interval was 432.14 m3 s−1 in 1991, which increased to 446.91 m3 s−1 in 2014. It can be concluded that the probability of larger and/or more frequent floods waves in the Talar River is expected to increase. In addition, the amount of production of erosion material (gross erosion) in the watershed increased from 1,918,186 to 2,183,558 m3 yr−1, and the real soil losses per year (sediment yield) of the watershed increased from 440,482.4 to 501,421.3 m3 yr−1. The results clearly emphasized how the lack of appropriate land management and planning leads to increase the maximum flow discharge and sediment yield of the watershed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.