In this paper we discuss the polynomiality of a feasible version of Mehrotra's predictor-corrector algorithm whose variants have been widely used in several IPM based optimization packages. A numerical example is given that shows that the adaptive choice of centering parameter and correction terms in this algorithm may lead to small steps being taken in order to keep the iterates in a large neighborhood of the central path, which is important to proving polynomial complexity properties of this method.Motivated by this example, we introduce a safeguard in Mehrtora's algorithm that keeps the iterates in the prescribed neighborhood and allows us to obtain a positive lower bound on the step size. This safeguard strategy is also used when the affine scaling direction performs poorly. We prove that the safeguarded algorithm will terminate after at most O(n 2 log (x 0 ) T s 0 ) iteration. By modestly modifying the corrector direction, we reduce the iteration complexity to O(n log (x 0 ) T s 0 ). To ensure fast asymptotic convergence of the algorithm, we changed Mehrotra's updating scheme of the centering parameter slightly while keeping the safeguard. The new algorithms have the same order of iteration complexity as the safeguarded algorithms, but enjoy superlinear convergence as well. Numerical results using the McIPM and LIPSOL software packages are reported.
We study large scale extended trust region subproblems (eTRS) i.e., the minimization of a general quadratic function subject to a norm constraint, known as the trust region subproblem (TRS) but with an additional linear inequality constraint. It is well known that strong duality holds for the TRS and that there are efficient algorithms for solving large scale TRS problems. It is also known that there can exist at most one local non-global minimizer (LNGM) for TRS. We combine this with known characterizations for strong duality for eTRS and, in particular, connect this with the so-called hard case for TRS.We begin with a recent characterization of the minimum for the TRS via a generalized eigenvalue problem and extend this result to the LNGM. We then use this to derive an efficient algorithm that finds the global minimum for eTRS by solving at most three generalized eigenvalue problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.