We propose a model for optimizing structured portfolios with liquidity-adjusted Value-at-Risk (LVaR) constraints, whereby linear correlations between assets are replaced by the multivariate nonlinear dependence structure based on Dynamic Conditional Correlation t-copula modeling. Our portfolio optimization algorithm minimizes the LVaR function under adverse market circumstances and multiple operational and financial constraints. When we consider a diversified portfolio of international stock and commodity market indices under multiple realistic portfolio optimization scenarios, the obtained results consistently show the superiority of our approach relative to other competing portfolio strategies including the minimum-variance, risk-parity and equally weighted portfolio allocations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.