In this study, we developed a novel and efficient process for the fabrication of resistive strain gauges for healthcare-related applications. First, 1,9-nonanedithiol cross-linked gold nanoparticle (GNP) films were prepared via layer-by-layer (LbL) spin-coating and subsequently transferred onto flexible polyimide foil by contact printing. Four-point bending tests revealed linear response characteristics with gauge factors of ∼14 for 4 nm GNPs and ∼26 for 7 nm GNPs. This dependency of strain sensitivity is attributed to the perturbation of charge carrier tunneling between neighboring GNPs, which becomes more efficient with increasing particle size. Fatigue tests revealed that the strain-resistance performance remained nearly the same after 10.000 strain/relaxation cycles. We demonstrate that these sensors are well suited to monitor muscle movements. Furthermore, we fabricated all-printed strain sensors by directly transferring cross-linked GNP films onto soft PDMS sheets equipped with interdigitated electrodes. Due to the low elastic modulus of poly(dimethylsiloxane) (PDMS), these sensors are easily deformed and, therefore, they respond sensitively to faint forces. When taped onto the skin above the radial artery, they enable the well-resolved and robust recording of pulse waves with diagnostically relevant details.
In this study the chemiresistive responses of gold nanoparticle superlattices are investigated by GISAXS and microgravimetry.
In this study, a highly responsive humidity sensor is developed by printing gold nanoparticles (GNPs) grafted with a hygroscopic polymer. These GNPs are inkjet-printed to form a uniform thin film over an interdigitated electrode with a controllable thickness by adjusting the printing parameters. The resistance of the printed GNP thin film decreases significantly upon exposure to water vapor and exhibits a semi-log relationship with relative humidity (RH). The sensor can detect RH variations from 1.8 to 95% with large resistance changes up to 4 orders of magnitude with no hysteresis and small temperature dependence. In addition, with a small thickness, the sensor can reach absorption equilibrium quickly with response and recovery times of ≤1.2 and ≤3 s, respectively. The fast response to humidity changes also allows the GNP thin-film sensor to distinguish signals from intermittent humidification/dehumidification cycles with a frequency up to 2.5 Hz. The printed sensors on flexible substrates show little sensitivity to bending deformation and can be embedded in a mask for human respiratory detection. In summary, this study demonstrates the feasibility of applying printing technology for the fabrication of thin-film humidity sensors, and the methodology developed can be further applied to fabricate many other types of nanoparticle-based sensor devices.
Freestanding nanoassemblies represent a new class of functional materials with highly responsive optical, electrical, and mechanical properties. Hence, they are well-suited for applications in advanced sensor devices. Here, it is shown that transfer printing enables the well-controlled fabrication of freestanding membranes from layered nanoassemblies: Using a polydimethylsiloxane (PDMS) stamp, thin films (thickness: ∼45 to ∼51 nm) of 1,6-hexanedithiol cross-linked gold nanoparticles (diameter: ∼3.9 ± 0.8 nm) were transferred onto surface-oxidized silicon substrates featuring square microcavities with edge lengths of ∼78 μm. After adjusting the contact pressure to 1.8 bar, intact membranes were printed in yields of ∼70%. The prestress of printed membranes was determined by measuring their resonance frequencies under electrostatic actuation. In general, the prestress values were in the ∼10 MPa range with standard deviations below 10% for parallel printed resonators. The deviations in average prestress between resonators printed onto different substrates were 21% or less. By increasing the temperature during the final transfer step from 5 to 48 °C, it was possible to tune the average prestress from ∼14 to ∼28 MPa. This effect was attributed to the pronounced thermal expansion of the PDMS stamp. Finally, by transfer printing layered films of graphene oxide/silk fibroin (GO/SF), it is shown that the approach can be adapted for the fabrication of freestanding membranes from very different nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.