Fruit rot disease of sweet pepper is one of the main fungal diseases causing huge economic losses to the grower. An experiment was conducted to find out the fungal pathogen associated with fruit rot disease of sweet pepper, obtained from experimental fields of Jahangirnagar University, Bangladesh. Fruit rot disease-causing fungus was isolated from infected fruits and identified using morphological characterization based on colony features, mycelia, conidia as well as molecular characterization based on internal transcribe spacer (ITS) region of the fungus. ITS sequence of our studied fungus MH368146.1 was genetically 99-100% similar to sequences of Fusarium solani in NCBI database. Typical fruit rot symptoms were reproduced by artificial inoculations of the isolated fungus. The mycelial growth of this fungus was evaluated on ten different solid culture media i.e., Potato Dextrose Agar, Yeast Extract Agar, Honey Peptone Agar, Hansen’s Medium, Sabouraud’s Glucose Agar, Kauffman’s Agar, Potato Sucrose Agar, Richard’s Agar and Carrot Agar. Fungus grew well on all tested solid culture media. Several bio-control agents and two commercial fungicides were evaluated against isolated fungus under in vitro condition, in which the highest percent inhibition of radial growth of the fungus was determined as 64.75% due to Trichoderma reesei isolate 2, and 60.63% by Tilt 250 EC (500 ppm) at 7 days post-incubation. Therefore, T. reesei was found as the most suitable to control the growth of F. solani under laboratory conditions. However, further pot and field trials needed to be confirmed the bio-control potential of it. Int. J. Agril. Res. Innov. Tech. 11(2): 108-116, Dec 2021
An efficient regeneration protocol was established for two varieties (BARI tomato-9 and BARI tomato-15) of tomato (Lycopersicon esculentum Mill.) using three explants namely cotyledonary node, cotyledonary leaf and hypocotyls. Among the three explants, maximum number of shoots was produced from cotyledonary leaf explants of BARI tomato-15 on MS with 2.0 mg/l BAP and 0.5 mg/l IAA. In this combination of BAP and IAA 86%, on an average, cotyledonary leaf explants showed regeneration response 14.12 shoots/explants. Explants from hypocotyl showed best results in MS medium with 2.0 mg/l BAP and 0.2 mg/l IAA in both the varieties. In case of cotyledonary node, BARI tomato-15 showed 6.0 shoot/explant on MS with 2.0 mg/l BAP and 1.0 mg/l IAA. Molecular characterization of total ten varieties of tomato in Bangladesh was done by using six arbitrary oligonucleotide RAPD primers. A total of 140 bands were produced where the highest genetic distance (0.6769) was found between BARI tomato-3 and Mintoo tomato and lowest distance (0.1035) was observed between BARI tomato-7 and BARI tomato-8. This result will be useful for designing future breeding programs. Bangladesh J. Sci. Ind. Res.54(2), 117-124, 2019
Present studies were conducted to isolate and identify the seed-borne pathogenic fungus from the selected tomato variety through morphological and molecular techniques based on the sequencing of internal transcribed spacer (ITS) region of 18S rDNA. According to the colony and conidial features, the fungus was identified as Curvularia sp. The obtained ITS sequencing showed above 99% similarity with Curvularia lunata in the NCBI database. The sequence of the fungus was deposited in NCBI GenBank under the accession number: ITS, MH382879.1. Besides, the phylogenetic tree further confirmed the taxonomic position of the studied fungus. Growth characteristics of the fungus on nine different fungal culture media were evaluated, in which Honey peptone agar, Carrot agar, Potato sucrose agar, and Kauffman’s agar were found the most suitable. The maximum vegetative growth of the fungus was recorded at 30°C temperature and pH conditions. The bio-control potential of five different antagonists against the studied fungus was assessed, in which Trichoderma harzianum showed the better performance to restrict mycelial growth. Three ethanolic plant extracts were also evaluated, in which Lowsonia inermis L. exhibited above 60% mycelial growth inhibition of the fungus. Among three tested fungicides, Tilt 250 EC was found as an excellent fungicide to inhibit mycelial growth of C. lunata under in vitro conditions. Int. J. Agril. Res. Innov. Tech. 11(2): 124-132, Dec 2021
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.