Respiratory syncytial virus (RSV) causes severe disease in young infants, particularly those with heart or lung diseases or born prematurely. Because no vaccine is currently available, monoclonal antibodies are used to prevent severe RSV disease in high-risk infants. While it is known that RSV evolves to avoid recognition by antibodies, screening tools that can predict which changes to the virus may lead to antibody resistance are greatly needed.
Monoclonal antibodies are increasingly used for the prevention and/or treatment of viral infections. One caveat of their use is the ability of viruses to evolve resistance to antibody binding and neutralization. Computational strategies to predict which mutations will result in antibody resistance would be invaluable because current methods for identifying potential escape mutations are labor intensive and system-biased. Respiratory syncytial virus is an important pathogen for which monoclonal antibodies against the fusion (F) protein are used to prevent severe disease in high-risk infants. In this study, we used an approach that combines molecular dynamics simulations with FoldX to estimate changes in free energy in F protein folding and binding to the motavizumab antibody upon each possible amino acid change. We systematically selected 8 predicted escape mutations and tested them in an infectious clone. Consistent with our F protein stability predictions, replication-effective viruses were observed for each selected mutation. Six of the eight variants showed increased resistance to neutralization by motavizumab. Flow cytometry was used to validate the estimated (model-predicted) effects on antibody binding to F. Using surface plasmon resonance, we determined that changes in the on-rate of motavizumab binding were responsible for the reduced affinity for two novel escape mutations. Our study empirically validates the accuracy of our molecular modeling approach and emphasizes the role of biophysical protein modeling in predicting viral resistance to antibody-based therapeutics that can be used to monitor the emergence of resistant viruses and to design improved therapeutic antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.