The potential for climate change to exacerbate the burden of human infectious diseases is increasingly recognized, but its effects on infectious diseases of plants have received less attention. Understanding the impacts of climate on the epidemiological dynamics of plant pathogens is imperative, as these organisms play central roles in natural ecosystems and also pose a serious threat to agricultural production and food security. We use the fungal ‘flax rust’ pathogen (Melampsora lini) and its subalpine wildflower host Lewis flax (Linum lewisii) to investigate how climate change might affect the dynamics of fungal plant pathogen epidemics using a combination of empirical and modeling approaches. Our results suggest that climate change will initially slow transmission at both the within- and between-host scales. However, moderate resurgences in disease spread are predicted as warming progresses, especially if the rate of greenhouse gas emissions continues to increase at its current pace. These findings represent an important step towards building a holistic understanding of climate effects on plant infectious disease that encompasses demographic, epidemiological, and evolutionary processes. A core result is that neglecting processes at any one scale of plant pathogen transmission may bias projections of climate effects, as climate drivers have variable and cascading impacts on processes underlying transmission that occur at different scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.