Abnormal joint kinematics are commonly reported in the acute and chronic stages of recovery after anterior cruciate ligament (ACL) injury and have long been mechanistically implicated as a primary driver in the development of posttraumatic osteoarthritis (PTOA). Though strongly theorized, it is unclear to what extent biomechanical adaptations after ACL injury culminate in the development of PTOA, as data that directly connects these factors does not exist. Using a preclinical, noninvasive ACL injury rodent model, our objective was to explore the direct effect of an isolated ACL injury on joint kinematics and the pathogenetic mechanisms involved in the development of PTOA. A total of 32, 16-week-old Long-Evans rats were exposed to a noninvasive ACL injury. Marker-less deep learning software (DeepLabCut) was used to track animal movement for sagittal-plane kinematic analyses and micro computed tomography was used to evaluate subchondral bone architecture at days 7, 14, 28, and 56 following injury. There was a significant decrease in peak knee flexion during walking (p < .05), which had a moderate-to-strong negative correlation (r = −.59 to −.71; p < .001) with subchondral bone plate porosity in all load bearing regions of the femur and tibia. Additional comprehensive analyses of knee flexion profiles revealed dramatic alterations throughout the step cycle. This occurred alongside considerable loss of epiphyseal trabecular bone and substantial changes in anatomical orientation.Knee flexion angle and subchondral bone microarchitecture are severely impacted after ACL injury. Reductions in peak knee flexion angle after ACL injury are directly associated with subchondral bone plate remodeling.
Context Long-term eccentric exercise is known to promote muscle growth better than concentric exercise, but its acute effect on muscle is not well understood because of misinterpreted modeling and in situ and in vitro stretch protocols. Knowing if the initial bout of eccentric exercise promotes muscle growth and limits damage is critical to understanding the effect of this mode of exercise. Objective To directly evaluate the immediate effects of eccentric and concentric exercises on untrained muscle when fiber strains were physiological and exercise doses were comparable. Design Controlled laboratory study. Setting Laboratory. Patients or Other Participants A total of 40 skeletally mature male Long-Evans rats (age = 16 weeks, mass = 452.1 ± 35.2 g) were randomly assigned to an eccentric exercise (downhill walking, n = 16), concentric exercise (uphill walking, n = 16), or control (no exercise, n = 8) group. Intervention(s) Rats were exposed to a single 15-minute bout of eccentric or concentric exercise on a motorized treadmill and then were euthanized at 6 or 24 hours postexercise. We harvested the vastus lateralis muscle bilaterally. Main Outcome Measure(s) The percentage increase or decrease in protein abundance in exercised animals relative to that in unexercised control animals was evaluated as elevated phosphorylated p70S6k relative to total p70S6k. Fiber damage was quantified using immunoglobulin G permeability staining. One-way analysis of variance and post hoc Tukey tests were performed. Results Rats exposed to eccentric exercise and euthanized at 24 hours had higher percentage response protein synthesis rates than rats exposed to eccentric exercise and euthanized at 6 hours (P = .02) or to concentric exercise and euthanized at 6 (P = .03) or 24 (P = .03) hours. We assessed 9446 fibers for damage and found only 1 fiber was infiltrated (in the concentric exercise group euthanized at 6 hours). Furthermore, no between-groups differences in immunoglobulin G fluorescent intensity were detected (P = .94). Conclusions Incorporating eccentric exercise is a simple, universally available therapeutic intervention for promoting muscle recovery. A single 15-minute dose of eccentric exercise to a novice muscle can better exert an anabolic effect than a comparable dose of concentric exercise, with very limited evidence of fiber damage.
Context Researchers have traditionally used motion capture to quantify discrete biomechanical data points (peak values) during hop testing. However, these analyses restrict the evaluation to a single time point (ie, certain percentage of stance) and provide only a narrow view of movement. Applying more comprehensive analyses may help investigators identify important characteristics that are masked by the discrete analyses often used to screen patients for activity. Objective To examine the utility of functional data analyses to reveal asymmetries that are undetectable using discrete (ie, single time point) evaluations in participants with a history of anterior cruciate ligament reconstruction (ACLR) who achieved clinical hop symmetry. Design Cross-sectional study. Setting Laboratory. Patients or Other Participants Fifteen participants with unilateral ACLR (age = 21 ± 3 years, time from surgery = 4 ± 3 years) and 15 control participants without ACLR (age = 23 ± 2 years). Intervention(s) Lower extremity biomechanics during the triple–hop-for-distance task for the ACLR and contralateral limbs of patients and a representative limb of control participants were measured. Main Outcome Measure(s) Peak sagittal-plane joint power, joint work, and power profiles were determined. Results Using discrete analyses, we identified lower peak knee power and work in the ACLR limb compared with the contralateral and control limbs (P < .05) but were unable to demonstrate differences at the ankle or hip. Using functional data analyses, we observed asymmetries at the ankle, knee, and hip between the ACLR and contralateral or control limbs throughout stance (P < .05) and revealed that these asymmetries stemmed from knee power deficits that were prominent during early loading. Conclusions Despite achieving hop-distance symmetry, the ACLR limbs absorbed less power. Although this information was revealed using the discrete analyses, underlying asymmetries at the ankle and hip were masked. Using functional data analyses, we found interlimb asymmetries at the ankle, knee, and hip throughout ground contact and more fully elucidated the extent and source of asymmetries that can be used by clinicians and researchers alike to guide clinical decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.