A smart grid is an intelligent electricity network that allows efficient electricity distribution from the source to consumers through telecommunication technology. The legacy smart grid follows the centralized oligopoly marketplace for electricity trading. This research proposes a blockchain-based electricity marketplace for the smart grid environment to introduce a decentralized ledger in the electricity market for enabling trust and traceability among the stakeholders. The electricity prices in the smart grid are dynamic in nature. Therefore, price forecasting in smart grids has paramount importance for the service providers to ensure service level agreement and also to maximize profit. This research introduced a Stackelberg model-based dynamic retail price forecasting of electricity in a smart grid. The Stackelberg model considered two-stage pricing between electricity producers to retailers and retailers to customers. To enable adaptive and dynamic price forecasting, reinforcement learning is used. Reinforcement learning provides an optimal price forecasting strategy through the online learning process. The use of blockchain will connect the service providers and consumers in a more secure transaction environment. It will help tackle the centralized system’s vulnerability by performing transactions through customers’ smart contracts. Thus, the integration of blockchain will not only make the smart grid system more secure, but also price forecasting with reinforcement learning will make it more optimized and scalable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.