Cardiovascular diseases are the predominant cause of the death globally. It has become a challenge for the clinicians to understand the behavior of the stenoses and aneurysms at different stages of the growth. A numerical analysis based on a finite volume approach is employed for a 2-D axisymmetric, incompressible, laminar flow to simulate and compare the pulsatile blood flow in the models of arterial stenosis and aneurysm of the same sizes. Two key parameters, Radial velocity distribution and wall shear stress (WSS) distribution, have been considered for analyzing and comparing stenosis and aneurysm of same sizes of 30% and 50% severity. These parameters have been compared using unsteady blood flow of two frequencies: Womersley number (W0) of 7.75 and 10. In addition, the extent of the effect of Womersley number (W0) has been discussed. A flow input waveform is presented in terms of sinusoid. The results implicate that the Womersley number has a little effect on the flow field when the sizes were varied, which indicates the dominance of viscous force on the flow field of the models considered. It has been observed that the severity of the stenosis or aneurysm has significant effect on the flow field and wall shear stress. It has been concluded that, for a particular depth of stenosis and aneurysm, with the same flow inputs, WSS is significantly high in the stenosis compared to that in aneurysm indicating severe risk in stenosis.
Increased temperature of photovoltaic (PV) module decreases its performance; hence, integration of the cooling system is imperative to minimize this detrimental effect. In this study, passive cooling of PV module with different heatsinks have been simulated by thermal models using ANSYS Steady State Thermal software. The results were based on the effect of convective heat transfer coefficients from 5 to 1000 W/m2K for the temperature reduction of PV module using 19 different heatsinks. Three configurations: flat plate heat spreader, fin-only heatsinks, and fin-flat base plate combined heatsinks, have been studied at 35 °C ambient temperature and 800 W/m2 solar radiation. The result shows that at convective heat transfer coefficient of 10 W/m2K, the combined type model C7 and the fin-only type model B4 demonstrated around 18.94 % and 9.36 % lower PV cell temperature, respectively than the flat plat type model A2. Moreover, C7 and B4 models had about 67.5 5% and 78.03 % less material weight than the A2 model, making the heat spreader type least feasible compared to the other two. The temperature contours of the PV cell layer at a given operating condition showed uniform distribution for both flat plate types and combined types. In contrast, the fin-only heatsink configuration illustrated hotspots within the PV cell layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.