Quantum-well (QW) hybrid organic-inorganic perovskite (HOIP) crystals, e.g. A2Pb2X4 (A = BA, PEA, X = Br, I), demonstrated significant potentials as scintillating materials for wide energy radiation detection compared to their individual three-dimensional (3D) counterparts, e. g. BPbX3 (B = MA). Inserting 3D into QW structures resulting new structures namely A2BPb2X7 perovskite crystals and they may have promising optical and scintillation properties towards higher mass density and fast timing scintillators. In this article, we investigate the crystal structure, optical and scintillation properties of iodide-based QW HOIP crystals, A2PbI4 and A2MAPb2I7. A2PbI4 crystals exhibit green and red emission with fastest PL decay time < 1 ns, while A2MAPb2I7 crystals exhibit high mass density of > 3.0 g/cm3, and tunable smaller band gaps < 2.1 eV resulting from quantum and dielectric confinement. We observe that only PEA cation-based A2MAPb2I7 shows emission under X- and γ-ray excitations. We further observe that QW HOIP iodide scintillators exhibit shorter radiation absorption length (~3 cm at 511 keV) and faster decay time component (~0.5 ns) compared to QW HOIP bromide scintillators. We investigate the light yields of both QW HOIP crystals (> 7 photons/keV) at 10 K, while at room temperature are still low > 0.6 photons/keV compared to our previously reported QW bromide crystals (10-40 photons/keV). Thus, promising results of our study on iodide-based QW HOIP scintillators provide the right pathway for further enhancement towards fast-timing applications.
Quantum-well (QW) hybrid organic-inorganic perovskite (HOIP) crystals, e.g. A2Pb2X4 (A = BA, PEA, X = Br, I), demonstrated significant potentials as scintillating materials for wide energy radiation detection compared to their individual three-dimensional (3D) counterparts, e. g. BPbX3 (B = MA). Inserting 3D into QW structures resulting new structures namely A2BPb2X7 perovskite crystals and they may have promising optical and scintillation properties towards higher mass density and fast timing scintillators. In this article, we investigate the crystal structure, optical and scintillation properties of iodide-based QW HOIP crystals, A2PbI4 and A2MAPb2I7. A2PbI4 crystals exhibit green and red emission with fastest PL decay time < 1 ns, while A2MAPb2I7 crystals exhibit high mass density of > 3.0 g/cm3, and tunable smaller band gaps < 2.1 eV resulting from quantum and dielectric confinement. We observe that only PEA cation-based A2MAPb2I7 shows emission under X- and γ-ray excitations. We further observe that QW HOIP iodide scintillators exhibit shorter radiation absorption length (~3 cm at 511 keV) and faster decay time component (~0.5 ns) compared to QW HOIP bromide scintillators. We investigate the light yields of both QW HOIP crystals (> 7 photons/keV) at 10 K, while at room temperature are still low > 0.6 photons/keV compared to our previously reported QW bromide crystals (10-40 photons/keV). Thus, promising results of our study on iodide-based QW HOIP scintillators provide the right pathway for further enhancement towards fast-timing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.