This study aims to evaluate the accuracy of a method proposed for passive localization of radar emitters around irregular terrains with a single receiver in Electronic Support Measures (ESM) systems. Previously, only the theoretical development of the localization method was targeted by the authors. In fact, this could be a serious concern in practice since there is no evidence about its accuracy under the real data gathered from realistic scenarios. Therefore, firstly, an accurate ray-tracing algorithm is adapted to the method in order to enable its implementation in practice. Then, scenarios are determined based on the geographic information system (GIS) map generated to collect high resolution digital terrain elevation data (DTED) as well as realistic localization problems for radar emitters. Next, the improved method is tested with simulations, and thus, its performance is verified for practical implementation in Electronic Warfare (EW) context for the first time in the literature. Lastly, based on the simulation results, the performance bounds of the method are also discussed.
On the accuracy of emitter localization method based on multipath exploitation in realistic scenariosThis study aims to evaluate the accuracy of a method proposed for passive localization of radar emitters around irregular terrains with a single receiver in Electronic Support Measures (ESM) systems. Previously, only the theoretical development of the localization method was targeted by the authors. In fact, this could be a serious concern in practice since there is no evidence about its accuracy under the real data gathered from realistic scenarios. Therefore, firstly, an accurate ray-tracing algorithm is adapted to the method in order to enable its implementation in practice. Then, scenarios are determined based on the geographic information system (GIS) map generated to collect high resolution digital terrain elevation data (DTED) as well as realistic localization problems for radar emitters. Next, the improved method is tested with simulations, and thus, its performance is verified for practical implementation in Electronic Warfare (EW) context for the first time in the literature. Lastly, based on the simulation results, the performance bounds of the method are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.