Ga2O3 is expected to show similar radiation resistance to that of GaN and SiC. This is not enough to explain the orders of magnitude difference in the relative resistance to radiation damage of these materials compared to GaAs or why dynamic annealing of defects is much more effective in Ga2O3. Octahedral gallium monovacancies are the main defects produced under most radiation conditions because of the larger cross-section for interaction compared to oxygen vacancies. Proton irradiation introduces two main paramagnetic defects in Ga2O3, which are stable at room temperature. Charge carrier removal can be explained by Fermi-level pinning far from the conduction band minimum due to gallium interstitials, vacancies, and antisites. With few experimental or simulation studies on single event effects in Ga2O3 , it is apparent that while other wide bandgap semiconductors like SiC and GaN are robust against displacement damage and total ionizing dose, they display significant vulnerability to single event effects at high linear energy transfer and at much lower biases than expected. We have analyzed the transient response of β-Ga2O3 rectifiers to heavy-ion strikes via TCAD simulations. Using field metal rings improves the breakdown voltage and biasing those rings can help control the breakdown voltage.
We report thermal and mechanical responses accompanying electrical characteristics of depletion mode GaN high electron mobility transistors exposed to gamma radiation up to 107 rads. Changes in the lattice strain and temperature were simultaneously characterized by changes in the phonon frequency of E2 (high) and A1 (LO) from the on-state and unpowered/pinched off reference states. Lower doses of radiation improved electrical properties; however, degradation initiated at about 106 rads. We observed about 16% decrease in the saturation current and 6% decrease in the transconductance at the highest dose. However, a leakage current increase by three orders of magnitude was the most notable radiation effect. We observed temperature increase by 40% and mechanical stress increase by a factor of three at a dose of 107 rads compared to the pristine devices. Spatial mapping of mechanical stress along the channel identifies the gate region as a mechanically affected area, whereas the thermal degradation was mostly uniform. Transmission electron microscopy showed contrast changes reflecting a high vacancy concentration in the gate region. These findings suggest that localized stress (mechanical hotspots) may increase vulnerability to radiation damage by accommodating higher concentration of defects that promote the leakage current.
Radiation damage mitigation in electronics remains a challenge because the only established technique, thermal annealing, does not guarantee a favorable outcome. In this study, a non-thermal annealing technique is presented, where electron momentum from very short duration and high current density pulses is used to target and mobilize the defects. The technique is demonstrated on 60Co gamma irradiated (5 x 106 rad dose and 180 x 103 rad/hr dose rate) GaN high electron mobility transistors. The saturation current and maximum transconductance were fully and threshold voltage was partially recovered at 30°C or less. In comparison, thermal annealing at 300°C mostly worsened the post-irradiation characteristics. Raman spectroscopy showed an increase in defects that reduce the 2-dimensional electron gas (2DEG) concentration and increase the carrier scattering. Because the electron momentum force is not applicable to the polymeric surface passivation, the proposed technique could not recover the gate leakage current, but performed better than thermal annealing. The findings of this study may benefit the mitigation of some forms of radiation damage in electronics that are difficult to achieve with thermal annealing.
Radiation damage in electronic devices is known to be influenced by physics, design, and materials system. Here, we report the effects of biasing state (such as ON and OFF) and pre-existing damage in GaN high electron mobility transistors exposed to γ radiation. Controlled and accelerated DC biasing was used to prestress the devices, which showed significant degradation in device characteristics compared to pristine devices under ON and OFF states after γ irradiation. The experiment is performed in situ for the ON-state to investigate transient effects during irradiation until the total dose reaches 10 Mrad. It shows that threshold voltage, maximum transconductance, and leakage current initially decrease with dosage but slowly converge to a steady value at higher doses. After 10 Mrad irradiation, the OFF-state device demonstrates larger RON and one order of magnitude increased leakage current compared to the ON-state irradiated device. The micro-Raman study also confirms that the ON-state operation shows more radiation hardness than OFF and prestressed devices. Prestressed devices generate the highest threshold voltage shift from −2.85 to −2.49 V and two orders of magnitude higher leakage current with decreased saturation current after irradiation. These findings indicate that high electric fields during stressing can generate defects by modifying strain distribution, and higher defect density can not only create more charges during irradiation but also accelerate the diffusion process from the ionizing track to the nearest collector and consequently degrade device performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.