Classification of different mental tasks using electroencephalogram (EEG) signal plays an imperative part in various brain–computer interface (BCI) applications. In the design of BCI systems, features extracted from lower frequency bands of scalp-recorded EEG signals are generally considered to classify mental tasks and higher frequency bands are mostly ignored as noise. However, in this paper, it is demonstrated that high frequency components of EEG signal can provide accommodating data for enhancing the classification performance of the mental task-based BCI. Instead of using autoregressive (AR) parameters considering AR modeling of EEG data, reflection coefficients obtained from EEG signal are proposed as potential features. From a given frame of EEG data, reflection coefficients are directly extracted by using the autocorrelation values in a recursive fashion, which avoids matrix inversion and computation of AR parameters. Use of reflection coefficients not only provides an effective feature vector for EEG signal classification but also offers very low computational burden. Support vector machine classifier is deployed in leave-one-out cross-validation manner to carry out classification process. Extensive simulation is done on an openly accessible dataset containing five different mental tasks. It is found that the proposed scheme can classify mental tasks with a very high level of accuracy as well as low time complexity in contrast with some of the existing strategies.
Continuous Blood Pressure (BP) provides essential information for monitoring one's health condition. However, BP is currently monitoring using uncomfortable cuff-based devices, which does not support continuous BP monitoring. This paper aims to introduce a blood pressure monitoring algorithm based on only photoplethysmography (PPG) signals using the deep neural network (DNN). The PPG signals are obtained from 219 subjects with 657 records and filtered using signal processing algorithms to reduce the effects of noise, such as baseline wandering, and motion artifacts. The proposed algorithm is based on pulse wave analysis of PPG signals, extracted various domain features from PPG signals, and mapped them to BP values. Four feature selection methods are applied and yielded four feature subsets. Therefore, an ensemble feature selection technique is proposed to obtain the optimal feature set based on major voting scores from four feature subsets. DNN models, along with the ensemble feature selection technique, outperformed in estimating the systolic blood pressure (SBP) and diastolic blood pressure (DBP) compared to previously reported approaches that rely only on the PPG signal. The coefficient of determination (R2) and mean absolute error (MAE) of the proposed algorithm are 0.962 and 2.480 mmHg respectively for SBP, 0.955 and 1.499 mmHg respectively for DBP. The proposed approach meets the Advancement of Medical Instrumentation standard for SBP and DBP estimations. Additionally, according to the British Hypertension Society standard, the results attained Grade A for both SBP and DBP estimations. It concludes that BP can be estimated more accurately using the optimal feature set and DNN models. The proposed algorithm has the potential ability to facilitate mobile healthcare devices to monitor continuous BP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.