We report the development and performance of a cold target recoil ion momentum spectrometer (COLTRIMS) setup at TIFR, which is built to study various atomic and molecular processes involving the interaction of slow, highly charged ions from an electron cyclotron resonance based ion accelerator. We give a detailed description of the experimental setup, as well as report some initial results on the electron-capture process in collisions of Ar8+ ions with helium and carbon monoxide targets. Here, we present the longitudinal momentum transfer and the sub-shell resolved Q-value spectrum in the case of 2, 4, and 6 keV/u Ar8+ beams in collision with helium. A longitudinal momentum resolution of 0.27 a.u. is achieved in the present system. We also report the state-selective scattering angle distributions for all the collision systems under investigation. We further discuss the fragmentation of the CO2+ molecular ions for different electron capture channels for the 5 keV/u Ar8+ beam. The combination of the COLTRIMS, along with the beam cleaner, the electrostatic deflectors, and the charge state analyzer, is shown to have certain advantages.
We report the development of a supersonic jet assembly to study electron transfer collisions with atoms, molecules, and van der Waals clusters. A comparative study of Ar monomer and dimer cations is presented for different capture-associated channels with a 2.5 keV/u O2+ projectile beam. For the Ar+ + Ar+ fragmentation channel, the interatomic relaxation channels are discussed. The vacancies of the dimer single site or double site show the dependence on capture mechanisms. In the Ar2+ + Ar+ fragmentation channel, double capture, in addition to the single ionization process, dominates. The orientation effect reflects the maximum yield at around 50 and 130 degrees, and angular distributions are nearly symmetric about the axis perpendicular to the dimer axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.