In this paper, a new and novel Automatic Speaker Recognition (ASR) system is presented. The new ASR system includes novel feature extraction and vector classification steps utilizing distributed Discrete Cosine Transform (DCT-II) based Mel Frequency Cepstral Coefficients (MFCC) and Fuzzy Vector Quantization (FVQ). The ASR algorithm utilizes an approach based on MFCC to identify dynamic features that are used for Speaker Recognition (SR). A series of experiments were performed utilizing three different feature extraction methods: (1) conventional MFCC; (2) Delta-Delta MFCC (DDMFCC); and (3) DCT-II based DDMFCC. The experiments were then expanded to include four classifiers: (1) FVQ; (2) K-means Vector Quantization (VQ); (3) Linde, Buzo and Gray VQ; and (4) Gaussian Mixed Model (GMM). The combination of DCT-II based MFCC, DMFCC and DDMFCC with FVQ was found to have the lowest Equal Error Rate for the VQ based classifiers. The results found were an improvement over previously reported non-GMM methods and approached the results achieved for the computationally expensive GMM based method. Speaker verification tests carried out highlighted the overall performance improvement for the new ASR system. The National Institute of Standards and Technology Speaker Recognition Evaluation corpora was used to provide speaker source data for the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.