Introduction: Ceriops decandra (CD) and Ceriops tagal (CT) are two traditionally used mangrove plants widely distributed along the coastal areas of South Asia, Africa, South Pacific. In this study, we evaluated the diuretic potential of aerial roots of CD, CT and assessed the effectiveness of the plants' terpenoids enriched bioactive constituents against human carbonic anhydrase (hCA) enzyme through molecular docking. Materials and methods: Firstly, the acute toxicity of CD and CT was evaluated in mice. In vivo diuretic activity was then studied in mice and the volume of excreted urine was measured. The urine was further examined for pH, density and Na þ , K þ , Cl À concentrations. From this, the saluretic, natriuretic, kaliuretic and CAI (carbonic anhydrase inhibitory) activities were calculated. Finally, total terpenoid contents (TTC) of the plant extracts were quantified and the terpenoids previously reported from both CD and CT were docked against four hCA isoforms -hCAII, hCAIV, hCAXII and hCAXIV. Results: In the acute toxicity assessment, no sign of toxicity was found. In diuretic activity evaluation, both extracts displayed substantial increase in urine volume, with CD being at top. Concentrations of Na þ , K þ and Cl À were also upsurged at a high dose of treatment (500 mg/kg). Both extracts at 500 mg/kg dose demonstrated potent saluretic, natriuretic and CAI activity. The TTC of CD was significantly higher than CT. In molecular docking analysis, greater binding affinity against hCA isoforms was demonstrated by the terpenoids reported from CD. Conclusion: Aerial roots of both CD and CT possess substantial diuretic activity with an inhibitory effect on CA. Here, diuretic potential as well as the total terpenoid content of CD were much greater between the two.
Hoya parasitica (Wall.) is extensively used in traditional medicine for the treatment of various diseases including rheumatism, kidney problems, jaundice, urinary tract disorders, fever, and pain. The present study was designed to explore new lead compound(s) to alleviate pain, pyresis, and diarrhea from methanol, ethyl acetate, and n-hexane extracts of H. parasitica (Wall.) leaves (MHP, EAHP, and NHP, respectively). Analgesic activity of the extracts was assessed through acetic acid induced writhing, tail immersion, and hot plate tests while brewer’s yeast-induced pyrexia test was employed for the assessment of antipyretic activity. Besides, castor oil and magnesium sulfate induced diarrheal tests were utilized for the evaluation of antidiarrheal properties. Moreover, in silico study of the isolated compounds was undertaken to seek out best-fit phytoconstituent(s) against cyclooxygenase enzymes. MHP revealed substantial antioxidant activities in different in vitro assays compared to EAHP and NHP. In the acetic acid-induced writhing test, among the extracts, MHP (400 mg/kg) revealed maximum 74.15 ± 1% inhibition of writhing comparable to that of standard (85.77 ± 1.39%). Again, in tail immersion and hot plate tests, higher doses of all the test samples exhibited a significant increase of latent period in a time-dependent manner. In brewer yeast-induced pyrexia test, at 3rd and 4th hour of treatment, significant ( P < 0.05 ) antipyretic action was found in the test samples. In both castor oil and magnesium induced diarrheal tests, MHP at 400 mg/kg showed the highest percent inhibition of diarrhea (68.62 ± 4.74 and 64.99 ± 2.90, respectively). Moreover, molecular docking analysis corroborated the results of the present study. The findings of the present study supported the traditional uses of this plant for the alleviation of pain and fever. Furthermore, hoyasterone was found to be the most effective lead compound as cyclooxygenase enzyme inhibitor.
The present research aimed to synthesize ketoprofen prodrugs and to demonstrate their potentiality for oral treatment to treat chronic inflammation by reducing its hepatotoxicity and gastrointestinal irritation. Methyl 2-(3-benzoyl phenyl) propanoate, ethyl 2-(3-benzoyl phenyl) propanoate and propyl 2-(3-benzoyl phenyl) propanoate was synthesized by esterification and identified by nuclear magnetic resonance (1HNMR) and infrared (IR) spectrometric analysis. In silico SwissADME and ProTox-II analysis stated methyl derivative as ideal candidate for oral absorption, having a >30-fold LD50 value compared to ketoprofen with no hepatotoxicity. Moreover, in vivo hepatotoxicity study demonstrates that these ester prodrugs have significantly lower effects on liver toxicity compared to pure ketoprofen. Furthermore, ex vivo intestinal permeation enhancement ratio was statistically significant (* p < 0.05) compared to ketoprofen. Likewise, the prodrugs were found to exhibit not only remarkable in vitro anti-proteolytic and lysosomal membrane stabilization potentials, but also significant efficiency to alleviate pain induced by inflammation, as well as central and peripheral stimulus in mice model in vivo. These outcomes recommend that ketoprofen ester prodrugs, especially methyl derivative, can be a cost-effective candidate for prolonged treatment of chronic inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.