The act of writing letters or words in free space with body movements is known as air-writing. Air-writing recognition is a special case of gesture recognition in which gestures correspond to characters and digits written in the air. Air-writing, unlike general gestures, does not require the memorization of predefined special gesture patterns. Rather, it is sensitive to the subject and language of interest. Traditional air-writing requires an extra device containing sensor(s), while the wide adoption of smart-bands eliminates the requirement of the extra device. Therefore, air-writing recognition systems are becoming more flexible day by day. However, the variability of signal duration is a key problem in developing an air-writing recognition model. Inconsistent signal duration is obvious due to the nature of the writing and data-recording process. To make the signals consistent in length, researchers attempted various strategies including padding and truncating, but these procedures result in significant data loss. Interpolation is a statistical technique that can be employed for time-series signals to ensure minimum data loss. In this paper, we extensively investigated different interpolation techniques on seven publicly available air-writing datasets and developed a method to recognize air-written characters using a 2D-CNN model. In both user-dependent and user-independent principles, our method outperformed all the state-of-the-art methods by a clear margin for all datasets.
Gait recognition with wearable sensors is an effective approach to identifying people by recognizing their distinctive walking patterns. Deep learning-based networks have recently emerged as a promising technique in gait recognition, yielding better performance than template matching and traditional machine learning methods. However, most recent studies have focused on improving gait detection accuracy while neglecting model complexity in the deep learning domain, making them unsuitable for low-power wearable devices. Therefore, inference from these models results in latency due to calculation overhead. This study proposes an efficient network suitable for wearable devices without sacrificing prediction performance. We have modified the residual block and accumulated it in shallow convolutional neural networks with five weighted layers only for gait recognition and proved the efficacy of all the architectural components with extensive experiments over publicly available IMU-based datasets: whuGait and OU-ISIR. Our proposed model outperforms all the state-of-the-art methods regarding recognition accuracy and is more than 85 percent efficient on average in terms of model parameters and memory consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.